

Copyright © 2019 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any
way, including, but not limited to, photocopy, photograph, magnetic, electronic or other record,
without the prior written permission of Red Hat, Inc.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, Hibernate, Fedora, the
Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and
other countries.

 Copyright © 2019 Red Hat, Inc.

RPM Training for Verizon Media Group

Abstract:
In this lab, we'll learn best practices for packaging software using the Red Hat Enterprise Linux
native packaging format, RPM. We'll cover how to properly build software from source code into
RPM packages, create RPM packages from pre-compiled binaries, and to automate RPM builds
from source code version control systems, such as git, for use in CI/DevOps environments. Also
in this lab, we'll hear tips and tricks from lessons learned, such as how to set up and work with
pristine build environments and why such things are important to software packaging.

Audience/Intro/Prerequisites:
This lab is geared towards Systems Administrators, DevOps Practitioners, and Software
Developers who might be interested in learning how to create RPM Packages. Attendees,
during this session, will learn:

● What is source code
● How software is made:

○ Natively Compiled
○ Interpreted Programming Languages

● Building software from source
● Patching software
● Installing arbitrary artifacts
● RPM Package Format
● How to setup an RPM Packaging Workspace
● What is an RPM SPEC file

○ Including various directives and sections
○ RPM Macros

● BuildRoots
● How to Build RPMs
● Sanity Checking RPMs
● PGP Signing RPMs With GPG
● Advanced RPM Packaging topics (Appendix)

○ Pristine Build Environments using mock
○ DevOps Workflows using Version Control Systems such as git
○ More on RPM Macros: Language Specific and Defining Your Own
○ Defining Package Epoch
○ Using RPM Scriptlets and Triggers
○ AppStreams and Modularity: The future of Packaging

Copyright ©2019 Red Hat, Inc.

To accomplish this, they will need a background or experience in at a minimum installing
software on Red Hat Enterprise Linux 7 using rpm and yum.

Document Conventions
Code and command line output will be placed into a block similar to the following:

This is a block! We can do all sorts of cool code and command line stuff here!

Look, more lines!

$ echo "Here's some command line output!"

Here's some command line output!

Topics of interest or vocabulary terms will either be referred to as URLs to their respective
documentation/website, as a ​bold​ item, or in ​italics​. The first encounter of the term should be a
reference to its respective documentation.
Command line utilities, commands, or things otherwise found in code that are used throughout
paragraphs will be written in a monospace font.

Notes are marked as ​Note: ​and any files that are displayed in their entirety are marked as ​File
Listing: ​FILENAME

Prerequisites
In order to perform the following examples you will need a few packages installed on your
system:

Note: ​The inclusion of some of the packages below are not actually necessary because they
are a part of the default installation of Red Hat Enterprise Linux but are listed explicitly for
perspective of exactly the tools used within this document.

$ yum install gcc rpm-build rpm-devel rpmlint make python bash coreutils

diffutils patch rpmdevtools tree

Beyond these preliminary packages you will also need a text editor of your choosing. We will not
be discussing or recommending text editors in this document and we trust that everyone has at
least one they are comfortable with at their disposal.

 Copyright © 2019 Red Hat, Inc.

General Topics and Background
In this section we will walk through various topics about building software that are helpful
background or otherwise general topics that are important for a good RPM Packager to be
familiar with.

● What is​ ​Source Code​?
● How Programs Are Made
● Building from source into an output artifact (what type of artifact will depend on the

scenario and we will define what this means more specifically with examples).
● Patching Software
● Placing those output artifacts somewhere on the system that is useful within the

Filesystem Hierarchy Standard​.

What is Source Code?
Note: ​If you are familiar with what the following terms mean then feel free to skip this section:
source code, programming, programming languages.

In the world of computer software, ​source code​ is the term used to the representation of
instructions to the computer about how to perform a task in a way that is human readable,
normally as simple text. This human readable format is expressed using a​ ​programming
language​ which basically boils down to a set of rules about that programmers learn so that the
text they write is meaningful to the computer.

Note: ​There are many thousands of programming languages in the world. In this document we
will provide examples of only a couple, some finer points of various programming languages are
going to vary but hopefully this guide will prove to be a good conceptual overview.

For example, the following three examples are all a very simple program that will display the text
Hello World ​ to the command line. The reason for three versions of the example will become
apparent in the next section but this is three implementations of the same program written in
different programming languages. The program is a very common starting place for newcomers
to the programming world so it may appear familiar to some readers, but if it doesn’t do not
worry.

Note: ​In the first two examples below, the ​#! ​ line is known as a​ ​shebang​ and is not technically
part of the programming language source code.

This version of the example is written in the​ ​bash​ shell built in scripting language.

Copyright ©2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/

File listing:​ bello

#!/bin/bash

printf "Hello World\n"

This version of the example is written in a programming language named​ ​Python​.

File Listing:​ pello.py

#!/usr/bin/env python

print("Hello World")

This version of the example is written in a programming language named​ ​C​.

File Listing: ​cello.c

#include <stdio.h>

int main(void) {

 printf("Hello World\n");

 return 0;

}

The finer points of how to write software isn’t necessarily important at this time but if you felt so
inclined to learn to program that would certainly be beneficial in your adventures as a software
packager.

As mentioned before, the output of both examples to the command line will be simply, Hello
World when the source code is built and run. The topic of how that happens is up next!

How Programs Are Made
Before we dive too far into how to actually build code it is best to first understand a few items
about software source code and how it becomes instructions to the computer. Effectively, how
programs are actually made. There are many ways in which a program can be executed but it
boils down to effectively two common methods:

1. Natively Compiled
2. Interpreted (Byte Compiled and Raw Interpreted)

 Copyright © 2019 Red Hat, Inc.

https://www.python.org/
https://www.python.org/
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29

Natively Compiled Code
Software written in programming languages that compile to machines code or directly to a
binary executable (i.e. - something that the computer natively understands without an help) that
can be run stand alone is considered to be ​Natively Compiled​. This is important for building
RPM​ Packages because packages built this way are what is known as​ ​architecture​ specific,
meaning that if you compile this particular piece of software on a computer that uses a 64-bit
(x86_64) AMD or Intel processor, it will not execute on a (x86) 32-bit AMD or Intel processor.
The method by which this happens will be covered in the next section.

Interpreted Code
There are certain programming languages that do not compile down to a representation of
program that the computer natively understands. These programs are ​Interpreted​ and require a
Language​ ​Interpreter​ or Language Virtual Machine(VM). The name ​interpreter​ comes from it’s
similarities with how human language interpreters convert between two representations of
human speech to allow two people to talk, a programming language interpreter converts from a
format that the computer doesn’t “speak” to one that it does.

There are two types of Interpreted Languages, Byte Compiled and Raw Interpreted and the
distinction between these is useful to keep in mind when packaging software because of the
actual ​%build ​ process is going to be very different and sometimes in the case of Raw
Interpreted Languages there will be no series of steps required at all for the ​%build. ​ (What
%build ​ means in detail will be explained later, but the short version is this is how we tell the
RPM Packaging system to actually perform the ​build​). Where as Byte Compiled programming
languages will perform a build task that will “compile” or “translate” the code from the
programming language source that is human readable to an intermediate representation of the
program that is more efficient for the programming language interpreter to execute.

Software written entirely in programming languages such as​ ​bash​ shell script and​ ​Python​ (as
used in our example) are ​Interpreted​ and therefore are not​ ​architecture​ specific which means
the resulting RPM Package that is created will be considered ​noarch ​. This indicates that it
does not have an​ ​architecture​ associated with it.

Copyright ©2019 Red Hat, Inc.

http://rpm.org/
http://rpm.org/
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Interpreter_%28computing%29
https://en.wikipedia.org/wiki/Interpreter_%28computing%29
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.python.org/
https://www.python.org/
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture

Building Software from Source
In this section we will discuss and provide examples of building software from its source code.

Note: ​If you are comfortable building software from source code please feel free to skip this
section and move on. However, if you’d like to stick around and read it then please feel free and
it will hopefully serve as a refresher or possibly contain something interesting that’s new to you.

Source code must go through a ​build​ process and that process will vary based on specific
programming language but most often this is referred to as ​compiling​ or ​translating​ the
software. For software written in interpreted programming languages this step may not be
necessary but sometimes it is desirable to perform what is known as ​byte compiling​ as it’s
build process. We will cover each scenario below. The resulting built software can then be ​run
or “​executed​” which tells the computer to perform the task described to it in the source code
provided by the programmer who authored the software.

Note: ​There are various methods by which software written in different programming languages
can vary heavily. If the software you are interested in packaging doesn’t follow the exact
examples here, this will hopefully be an objective guideline.

Natively Compiled Code
Referencing the example previously used that is written in​ ​C​ (listed again below for the sake of
those who may have skipped the previous section), we will build this source code into
something the computer can execute.

File Listing: ​cello.c

#include <stdio.h>

int main(void) {

 printf("Hello World\n");

 return 0;

}

Build Process
In the below example we are going to invoke the​ ​C​ compiler from the GNU Compiler Collection
(​GCC​).

gcc -o cello cello.c

From here we can actually execute the resulting output binary.

 Copyright © 2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://gcc.gnu.org/

$./cello

Hello World

That’s it! You’ve built natively compiled software from source code!

Let’s take this one step further and add a​ ​GNU make​ Makefile which will help automate the
building of our code. This is an extremely common practice by real large scale software and is a
good thing to become familiar with as an RPM Packager. Let’s create a file named ​Makefile
in the same directory as our example​ ​C​ source code file named ​cello.c ​.

File Listing:​ Makefile

cello:

 gcc -o cello cello.c

clean:

 rm cello

Now to build our software we can simply run the command make, below you will see the
command run more than once just for the sake of seeing what is expected behavior.

$ make

make: 'cello' is up to date.

$ make clean

rm cello

$ make

gcc -o cello cello.c

$ make

make: 'cello' is up to date.

$./cello

Hello World

Congratulations! You have now both compiled software manually and used a build tool!

Interpreted Code

Copyright ©2019 Red Hat, Inc.

http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29

For software written in interpreted programming languages we know that we don’t need to
compile it, but if it’s a byte compiled language such as​ ​Python​ there may still be a step required.
Referencing the two examples previously (listed again below for the sake of those who may
have skipped the previous section), for​ ​Python​ we will build this source code into something the
Python​ Language Interpreter (known as​ ​CPython​) can execute.

Note: ​In the two examples below, the ​#! ​ line is known as a​ ​shebang​ and is not technically part
of the programming language source code.
The​ ​shebang​ allows us to use a text file as an executable and the system program loader will
parse the line at the top of the file containing a ​#! ​ character sequence looking a path to the
binary executable to use as the programming language interpreter.

Byte Compiled Code
As mentioned previously, this version of the example is written in a programming language
named​ ​Python​ and its default language virtual machine is one that executes ​byte compiled
code. This will “compile” or “translate” the source code into an intermediate format that is
optimized and will be much faster for the language virtual machine to execute.

File Listing: ​pello.py

#!/usr/bin/env python

print("Hello World")

The exact procedure to byte compile programs based on language will differ heavily based on
the programming language, its language virtual machine, and the tools or processes that are
common within that programming language’s community. Below is an example using​ ​Python​.

Note: ​The practice of byte compiling​ ​Python​ is common but the exact procedure shown here is
not. This is meant to be a simple example. For more information, please reference the​ ​Software
Packaging and Distribution​ documentation.

$ python -m compileall pello.py

$ python pello.pyc

Hello World

$ file foo.pyc

foo.pyc: python 2.7 byte-compiled

You can see here that after we byte-compiled the source ​.py ​ file we now have a ​.pyc ​ file
which is of ​python 2.7 byte-compiled ​ filetype. This file can be run with the python
language virtual machine and is more efficient than passing in just the raw source file, which is a
desired attribute of resulting software we as an RPM Packager will distribute out to systems.

 Copyright © 2019 Red Hat, Inc.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/CPython
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/2/library/distribution.html
https://docs.python.org/2/library/distribution.html
https://docs.python.org/2/library/distribution.html

Raw Interpreted
This version of the example is written in the​ ​bash​ shell built in scripting language.

File Listing:​ bello

#!/bin/bash

printf "Hello World\n"

UNIX-style shells have scripting languages, much like bash does, but programs written in these
languages do not have any kind of byte compile procedure and are interpreted directly as they
are written so the only procedure we have to do is make the file executable and then run it.

$ chmod +x bello

$./bello

Hello World

Patching Software
In software and computing a ​patch​ is the term given to source code that is meant to fix other
code, this is similar to the way that someone will use a piece of cloth to patch another piece of
cloth that is part of a shirt or a blanket. Patches in software are formatted as what is called a ​diff
since it represents what is ​different​ between to pieces of source code. A ​diff​ is created using the
diff ​ command line utility that is provided by​ ​diffutils​ and then it is applied to the original source
code using the tool​ ​patch​.

Note: ​Software developer will often use “Version Control Systems” such as​ ​git​ to manage their
code base. Tools like these provide their own methods of creating diffs or patching software but
those are outside the scope of this document.

Let’s walk through an example where we create a patch from the original source code using
diff ​ and then apply it using the​ ​patch​ utility. We will revisit patching software in a later section
when it comes to actually building RPMs and hopefully this exercise will prove it’s usefulness at
that time. First step in patching software is to preserve the original source code because we
want to keep the original source code in pristine condition as we will “patch it” instead of simply
modifying it. A common practice for this is to copy it and append ​.orig ​ to the filename. Let’s do
that now.

$ cp cello.c cello.c.orig

Copyright ©2019 Red Hat, Inc.

https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
http://www.gnu.org/software/diffutils/diffutils.html
http://www.gnu.org/software/diffutils/diffutils.html
http://savannah.gnu.org/projects/patch/
http://savannah.gnu.org/projects/patch/
https://git-scm.com/
https://git-scm.com/
http://savannah.gnu.org/projects/patch/
http://savannah.gnu.org/projects/patch/

Next, we want to make an edit to cello.c using our favorite text editor. Update your cello.c to
match the output below.

File Listing:​ cello.c

#include <stdio.h>

int main(void) {

 printf("Hello World from my very first patch!\n");

 return 0;

}

Now that we have our original source code preserved and the updated source code written, we
can generate a patch using the ​diff ​ utility.

Note: ​Here we are using a handful of common arguments for the ​diff ​ utility and their
documentation is out of the scope of this document. Please reference the manual page on your
local machine with: ​man diff ​for more information.

$ diff -Naur cello.c.orig cello.c

--- cello.c.orig 2016-05-26 17:21:30.478523360 -0500

+++ cello.c 2016-05-27 14:53:20.668588245 -0500

@@ -1,6 +1,6 @@

 #include<stdio.h>

 int main(void){

- printf("Hello World!\n");

+ printf("Hello World from my very first patch!\n");

 return 0;

 }

\ No newline at end of file

In this output, you can see the line that starts with a ​- ​ are being removed from the original
source code and replaced by the line that starts with ​+ ​. Let’s now save that output to a file this
time by redirecting the output so that we can use it later with the​ ​patch​ utility. It is not a
requirement but it’s good practice to use a meaningful filename when creating patches.

$ diff -Naur cello.c.orig cello.c > cello-output-first-patch.patch

Now we want to restore the ​cello.c ​ file to its original source code such that it is restored to its
pristine state and we can patch it with our new patch file. The reason this particular process is
important is because this is how it is done when building RPMs, the original source code is left
in pristine condition and we patch it during the process that prepares to source code to be built.

 Copyright © 2019 Red Hat, Inc.

http://savannah.gnu.org/projects/patch/
http://savannah.gnu.org/projects/patch/

$ cp cello.c.orig cello.c

Next up, let’s go ahead and patch the source code by redirecting the patch file to the patch
command.

$ patch < cello-output-first-patch.patch

patching file cello.c

$ cat cello.c

#include<stdio.h>

int main(void){

 printf("Hello World from my very first patch!\n");

 return 1;

}

From the output of the cat command we can see that the patch has been successfully applied,
let’s build and run it now.

$ make clean

rm cello

$ make

gcc -o cello cello.c

$./cello

Hello World from my very first patch!

Congratulations, you have successfully created a patch, patched software, built the patched
software and run it!

Next up, installing things!

Copyright ©2019 Red Hat, Inc.

Installing Arbitrary Artifacts
One of the many really nice things about​ ​Linux​ systems is the​ ​Filesystem Hierarchy Standard
(FHS) which defines areas of the filesystem in which things should be placed. As an RPM
Packager this is extremely useful because we will always know where to place things that come
from our source code.

This section references the concept of an ​Arbitrary Artifact​ which in this context is anything
you can imagine that is a file that you want to install somewhere on the system within the FHS.
It could be a simple script, a pre-existing binary, the binary output of source code that you have
created as a side effect of a build process, or anything else you can think up. We discuss it in
such a vague vocabulary in order to demonstrate that neither the system nor RPM care what
the ​Artifact​ in question is. To both RPM and the system, it is just a file that needs to exist in a
predetermined place. The permissions and the type of file it is makes it special to the system but
that is for us as an RPM Packager to decide.

For example, once we have built our software we can then place it on the system somewhere
that will end up in the system​ ​$PATH​ so that they can be found and executed easily by users,
developers, and sysadmins alike. We will explore two ways to accomplish this as they each are
quite popular approaches used by RPM Packagers.

install command
When placing arbitrary artifacts onto the system without build automation tooling such as​ ​GNU
make​ or because it is a simple script and such tooling would be seen as unnecessary overhead,
it is a very common practice to use the ​install ​ command (provided to the system by
coreutils​) to place the artifact in a correct location on the filesystem based on where it should
exist in the FHS along with appropriate permissions on the target file or directory.

The example below is going to use the ​bello ​ file that we had previously created as the
arbitrary artifact subject to our installation method. Note that you will either need​ ​sudo
permissions or run this command as root excluding the ​sudo ​ portion of the command.

$ sudo install -m 0755 bello /usr/bin/bello

At this point, we can execute ​bello ​ from our shell no matter what our current working directory
is because it has been installed into our​ ​$PATH​.

$ cd ~/

$ bello

 Copyright © 2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/PATH_%28variable%29
https://en.wikipedia.org/wiki/PATH_%28variable%29
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://www.gnu.org/software/coreutils/coreutils.html
http://www.gnu.org/software/coreutils/coreutils.html
http://www.sudo.ws/
http://www.sudo.ws/
https://en.wikipedia.org/wiki/PATH_%28variable%29
https://en.wikipedia.org/wiki/PATH_%28variable%29

Hello World

make install
A very popular mechanism by which you will install software from source after it’s built is by
using a command called ​make install ​ and in order to do that we need to enhance the
Makefile ​ we created previously just a little bit.

Note: ​The creation of Makefile is normally done by the developer who writes the original source
code of the software in question and as an RPM Packager this is not generally something you
will need to do. This is purely an exercise for background knowledge and we will expand upon
this as it relates to RPM Packaging later.

Open the ​Makefile ​ file up in your favorite text editor and make the appropriate edits needed
so that it ends up looking exactly as the following.

Note: ​The use of​ ​$(DESTDIR)​ is a​ ​GNU make​ built-in and is commonly used to install into
alternative destination directories.

File Listing: ​Makefile

cello:

 gcc -o cello cello.c

clean:

 rm cello

install:

 mkdir -p $(DESTDIR)/usr/bin

 install -m 0755 cello $(DESTDIR)/usr/bin/cello

Now we are able to use the make file to both build and install the software from source. Note
that for the installation portion, like before when we ran the raw ​install ​ command, you will
need either​ ​sudo​ permissions or be the ​root ​ user and omit the ​sudo ​ portion of the command.
The following will build and install the simple ​cello.c ​ program that we had written previously.

$ make

gcc -o cello cello.c

$ sudo make install

install -m 0755 cello /usr/bin/cello

Copyright ©2019 Red Hat, Inc.

https://www.gnu.org/software/make/manual/html_node/DESTDIR.html
https://www.gnu.org/software/make/manual/html_node/DESTDIR.html
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://www.sudo.ws/
http://www.sudo.ws/

Just as in the previous example, we can now execute ​cello ​ from our shell no matter what our
current working directory is because it has been installed into our​ ​$PATH​.

$ cd ~/

$ cello

Hello World

Congratulations, you have now installed a build artifact into its proper location on the system!

Prepping our example upstream source code
Note: ​If you’re familiar with how upstream software is distributed and would like to skip this,
please feel free to​ ​download the example source code​ for our fake upstream project and skip
this section. However if you are curious how the examples are created please feel free to read
along.

Now that we have our RPM Packaging Workspace setup, we should create simulated upstream
compressed archives of the example programs we have made. We will once again list them
here just in case a previous section was skipped.

Note: ​What we are about to do here in this section is not normally something an RPM Packager
has to do, this is normally what happens from an upstream software project, product, or
developer who actually releases the software as source code. This is simply to setup the RPM
Build example space and give some insight into where everything actually comes from.

We will also assume​ ​GPLv3​ as the​ ​Software License​ for all of these simulated upstream
software releases. As such, we will need a ​LICENSE ​ file included with each source code
release. We include this in our simulated upstream software release because encounters with a
Software License​ when packaging RPMs is a very common occurrence for an RPM Packager
and we should know how to properly handle them.

Note: ​The method used below to create the ​LICENSE ​ file is known as a​ ​here document​.

Let us go ahead and make a ​LICENSE ​ file that can be included in the source code “release” for
each example.

$ cat > /tmp/LICENSE <<EOF

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

 Copyright © 2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/PATH_%28variable%29
https://en.wikipedia.org/wiki/PATH_%28variable%29
https://github.com/redhat-developer/rpm-packaging-guide/tree/master/example-code
https://github.com/redhat-developer/rpm-packaging-guide/tree/master/example-code
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.gnu.org/licenses/quick-guide-gplv3.html
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Here_document
https://en.wikipedia.org/wiki/Here_document

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

EOF

Each implementation of the ​Hello World ​ example script will be created into a​ ​gzip
compressed tarball which will be used to simulate what an upstream project might release as it’s
source code to then be consumed and packaged for distribution.

Below is an example procedure for each example implementation.

bello
For the​ ​bash​ example implementation we will have a fake project called ​bello​ and since the
project named ​bello​ produces one thing and that’s a shell script named bello then it will only
contain that in it’s resulting ​tar.gz ​. Let’s pretend that this is version​ 0.1 ​ of that software and
we’ll mark the tar.gz file as such. Below is the listing of the file as mentioned before.

File Listing:​ bello

#!/bin/bash

printf "Hello World\n"

Let’s make a project tar.gz out of our source code.

$ mkdir /tmp/bello-0.1

$ mv ~/bello /tmp/bello-0.1/

$ cp /tmp/LICENSE /tmp/bello-0.1/

$ cd /tmp/

$ tar -cvzf bello-0.1.tar.gz bello-0.1

bello-0.1/

bello-0.1/LICENSE

bello-0.1/bello

$ mv /tmp/bello-0.1.tar.gz ~/rpmbuild/SOURCES/

Copyright ©2019 Red Hat, Inc.

https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/

pello
For the​ ​Python​ example implementation we will have a fake project called ​pello​ and since the
project named ​pello​ produces one thing and that’s a small program named ​pello.py ​ then it
will only contain that in it’s resulting ​tar.gz ​. Let’s pretend that this is version ​0.1.1 ​ of this
software and we’ll mark the ​tar.gz ​ file as such.

Here is the listing of the file as mentioned before.

File Listing: ​pello.py

#!/usr/bin/env python

print("Hello World")

Let’s make a project tar.gz out of our source code.

$ mkdir /tmp/pello-0.1.1

$ mv ~/pello.py /tmp/pello-0.1.1/

$ cp /tmp/LICENSE /tmp/pello-0.1.1/

$ cd /tmp/

$ tar -cvzf pello-0.1.1.tar.gz pello-0.1.1

pello-0.1.1/

pello-0.1.1/LICENSE

pello-0.1.1/pello.py

$ mv /tmp/pello-0.1.1.tar.gz ~/rpmbuild/SOURCES/

cello
For the​ ​C​ example implementation we will have a fake project called ​cello​ and since the project
named ​cello​ produces two things, the source code to our program named ​cello.c ​ and a
Makefile ​ we will need to make sure and include both of these in our ​tar.gz ​. Let’s pretend
that this is version ​1.0 ​ of the software and we’ll mark the ​tar.gz ​ file as such.

Here is the listing of the files involved as mentioned before.

 Copyright © 2019 Red Hat, Inc.

https://www.python.org/
https://www.python.org/
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29

You will notice the ​patch ​ file is listed here, but it will not go in our project tarball because it is
something that we as the RPM Packager will apply and not something that comes from the
upstream source code. RPM Packages are built in such a way that the original upstream source
code in preserved in its pristine form just as released by its creator. All patches required to the
software happen at RPM Build time, not before. We will place that in the
~/rpmbuild/SOURCES/ ​ directory along side the “upstream” source code that we are
simulating here. (More on this later).

File Listing: ​cello.c

#include <stdio.h>

int main(void) {

 printf("Hello World\n");

 return 0;

}

File Listing: ​cello-output-first-patch.patch

--- cello.c.orig 2016-05-26 17:21:30.478523360 -0500

+++ cello.c 2016-05-27 14:53:20.668588245 -0500

@@ -1,6 +1,6 @@

 #include<stdio.h>

 int main(void){

- printf("Hello World\n");

+ printf("Hello World from my very first patch!\n");

 return 1;

 }

File Listing: ​Makefile

cello:

 gcc -o cello cello.c

clean:

 rm cello

install:

 mkdir -p $(DESTDIR)/usr/bin

 install -m 0755 cello $(DESTDIR)/usr/bin/cello

Let’s make a project ​tar.gz ​ out of our source code.
$ mkdir /tmp/cello-1.0

Copyright ©2019 Red Hat, Inc.

$ mv ~/cello.c /tmp/cello-1.0/

$ mv ~/Makefile /tmp/cello-1.0/

$ cp /tmp/LICENSE /tmp/cello-1.0/

$ cd /tmp/

$ tar -cvzf cello-1.0.tar.gz cello-1.0

cello-1.0/

cello-1.0/Makefile

cello-1.0/cello.c

cello-1.0/LICENSE

$ mv /tmp/cello-1.0.tar.gz ~/rpmbuild/SOURCES/

$ mv ~/cello-output-first-patch.patch ~/rpmbuild/SOURCES/

Great, now we have all of our upstream source code prep’d and ready to be turned into RPMs!

 Copyright © 2019 Red Hat, Inc.

RPM Packaging Guide
Hello! Welcome to the RPM Packaging portion of From Source to RPM in 120 Minutes. Here
you will find all of the information you need in order to start packaging RPMs for various​ ​Linux
Distributions that use the​ ​RPM​ Packaging Format.

This guide assumes no previous knowledge about packaging software for any Operating
System, Linux or otherwise. However, it should be noted that this guide is written to target the
Red Hat “family” of Linux distributions, which are:

● Fedora
● CentOS
● Red Hat Enterprise Linux​ (often referred to as​ ​RHEL​ for short)

While these distros are the target environment, it should be noted that lessons learned here
should be applicable across all distributions that are​ ​RPM based​ but the examples will need to
be adapted for distribution specific items such as prerequisite installation items, guidelines, or
macros. (More on macros later)

Note: ​If you have made it this far and don’t know what a software package or a GNU/Linux
distribution is, you might be best served by exploring some articles on the topics of​ ​Linux​ and
Package Managers​.

RPM Packages
In this section we are going to hopefully cover everything you ever wanted to know about the
RPM Packaging format, and if not then hopefully the contents of the​ ​Appendix​ will satisfy the
craving for knowledge that has been left out of this section.

What is an RPM?
To kick things off, let’s first define what an RPM actually is. An RPM package is simply a file that
contains some files as well as information the system needs to know about those files. More
specifically, it is a file containing a​ ​cpio​ archive and metadata about itself. The​ ​cpio​ archive is
the payload and the RPM Header contains the metadata. The package manager ​rpm​ uses this
metadata to determine things like dependencies, where to install files, etc.
Conventionally speaking there are two different types of RPM, there is the Source RPM (SRPM)
and the binary RPM. Both of these share a file format and tooling, but they represent very
different things. The payload of a SRPM is a SPEC file (which describes how to build a binary
RPM) and the actual source code that the resulting binary RPM will be built out of (including any
patches that may be needed).

Copyright ©2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
http://rpm.org/
http://rpm.org/
https://getfedora.org/
https://www.centos.org/
https://www.redhat.com/en/technologies/linux-platforms
https://www.redhat.com/en/technologies/linux-platforms
https://www.redhat.com/en/technologies/linux-platforms
https://en.wikipedia.org/wiki/List_of_Linux_distributions#RPM-based
https://en.wikipedia.org/wiki/List_of_Linux_distributions#RPM-based
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Package_manager
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
https://en.wikipedia.org/wiki/Cpio
https://en.wikipedia.org/wiki/Cpio
https://en.wikipedia.org/wiki/Cpio
https://en.wikipedia.org/wiki/Cpio

RPM Packaging Workspace
In the​ Prerequisites​ section we installed a package named ​rpmdevtools ​ which provides a
number of handy utilities for RPM Packagers.
Feel free to explore the output of the following command and check out the various utilities
manual pages or help dialogs.

$ rpm -ql rpmdevtools | grep bin

For the sake of setting up our RPM Packaging workspace let’s use the rpmdev-setuptree utility
to create our directory layout. We will then define what each directory in the directory structure is
meant for.

$ rpmdev-setuptree

$ tree ~/rpmbuild/

/home/maxamillion/rpmbuild/

|-- BUILD

|-- RPMS

|-- SOURCES

|-- SPECS

`-- SRPMS

5 directories, 0 files

Directory Purpose

BUILD Various ​%buildroot ​directories will be created here when
packages are built. This is useful for inspecting a postmortem of a
build that goes bad if the logs output don’t provide enough
information.

RPMS Binary RPMs will land here in subdirectories of Architecture. For
example: ​noarch ​ and ​x86_64

SOURCES Compressed source archives and any patches should go here, this is
where the ​rpmbuild ​ command will look for them.

SPECS SPEC files live here.

SRPMS When the correct arguments are passed to ​rpmbuild ​ to build a
Source RPM instead of a Binary RPM, the Source RPMs (SRPMS)
will land in this directory.

 Copyright © 2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/index.html#pre-req

What is a SPEC File?
A SPEC file can be thought of as the ​recipe​ that the ​rpmbuild ​ utility uses to actually build an
RPM. It tells the build system what to do by defining instructions in a series of sections. The
sections are defined between the ​Preamble​ and the ​Body​. Within the ​Preamble​ we will define a
series of metadata items that will be used throughout the ​Body​ and the ​Body​ is where the bulk
of the work is accomplished.

Preamble Items
In the table below you will find the items that are used in RPM Spec files in the Preamble
section.

SPEC Directive Definition

Name The (base) name of the package, which should match the SPEC file
name

Version The upstream version number of the software.

Release The initial value should normally be 1%{?dist}, this value should be
incremented each new release of the package and reset to 1 when a
new Version of the software is built.

Summary A brief, one-line summary of the package.

License The license of the software being packaged. For packages that are
destined for community distributions such as​ ​Fedora​ this must be an
Open Source License abiding by the specific distribution’s Licensing
Guidelines.

URL The full URL for more information about the program (most often this
is the upstream project website for the software being packaged).

Source0 Path or URL to the compressed archive of the upstream source code
(unpatched, patches are handled elsewhere). This is ideally a listing
of the upstream URL resting place and not just a local copy of the
source. If needed, more SourceX directives can be added,
incrementing the number each time such as: Source1, Source2,
Source3, and so on.

Patch0 The name of the first patch to apply to the source code if necessary.
If needed, more PatchX directives can be added, incrementing the
number each time such as: Patch1, Patch2, Patch3, and so on.

Copyright ©2019 Red Hat, Inc.

https://getfedora.org/
https://getfedora.org/

BuildArch If the package is not architecture dependent, i.e. written entirely in an
interpreted programming language, this should be BuildArch: noarch
otherwise it will automatically inherit the Architecture of the machine
it’s being built on.

BuildRequires A comma or whitespace separated list of packages required for
building (compiling) the program. There can be multiple entries of
BuildRequires each on it’s own line in the SPEC file.

Requires A comma or whitespace separated list of packages that are required
by the software to run once installed. There can be multiple entries of
Requires each on it’s own line in the SPEC file.

ExcludeArch In the event a piece of software can not operate on a specific
processor architecture, you can exclude it here.

There are three “special” directives listed above which are ​Name ​, ​Version ​, and ​Release ​ they
are used to create the RPM package’s filename. You will often see these referred to by other
RPM Package Maintainers and Systems Administrators as ​N-V-R​ or just simply ​NVR​ as RPM
package filenames are of ​NAME-VERSION-RELEASE ​ format.

For example, if we were to query about a specific package:

$ rpm -q python

python-2.7.5-34.el7.x86_64

Here ​python ​ is our Package Name, ​2.7.5 ​ is our Version, and ​34.el7 ​ is our Release. The
final marker is ​x86_64 ​ and is our architecture, which is not something we control as an RPM
Packager (with the exception of ​noarch ​) but is a side effect of the ​rpmbuild ​ build
environment. We’ll cover both of these later.

Body Items
In the table below you will find the items that are used in RPM Spec files in the body.

SPEC Directive Definition

%description A full description of the software packaged in the RPM, this can
consume multiple lines and be broken into paragraphs.

%prep Command or series of commands to prepare the software to be built.
Example is to uncompress the archive in ​Source0 ​. This can contain
shell script.

 Copyright © 2019 Red Hat, Inc.

%build Command or series of commands used to actually perform the build
procedure (compile) of the software.

%install Command or series of commands used to actually install the various
artifacts into a resulting location in the FHS. Something to note is that
this is done within the relative context of the ​%buildroot ​ (more on
that later).

%check Command or series of commands to “test” the software. This is
normally things such as unit tests.

%files The list of files that will be installed in their final resting place in the
context of the target system.

%changelog A record of changes that have happened to the package between
different ​Version ​ or ​Release ​ builds.

Advanced items
There are a series of advanced items including what are known as ​scriptlets​ and ​triggers​ which
take effect at different points throughout the installation process on the target machine (not the
build process). These are out of the scope of this document, but there is plenty of information on
them in the​ ​Appendix​.

BuildRoots
The term “buildroot” is unfortunately ambiguous and you will often get various different
definitions. However in the world of RPM Packages this is literally a​ ​chroot​ environment such
that you are creating a filesystem hierarchy in a new “fake” root directory much in the way these
contents can be laid down upon an actual system’s filesystem and not violate it’s integrity.
Imagine this much in the same way that you would imagine creating the contents for a​ ​tarball
such that it would be expanded at the root (/) directory of an existing system as this is effectively
what RPM will do at a certain point during an installation transaction. Ultimately the payload of
the resulting Binary RPM is extracted from this environment and put into the​ ​cpio​ archive.

RPM Macros
A​ ​rpm macro​ is a straight text substitution that can be conditionally assigned based on the
optional evaluation of a statement when certain built-in functionality is used. What this means is
that we can have RPM perform text substitutions for us so that we don’t have to.

An example of how this can be extremely useful for an RPM Packager is if we wanted to
reference the Version of the software we are packaging multiple times throughout our SPEC file
but only want to define it one time. We would then use the ​%{version} ​macro and it would be

Copyright ©2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Tar_%28computing%29
https://en.wikipedia.org/wiki/Tar_%28computing%29
https://en.wikipedia.org/wiki/Cpio
https://en.wikipedia.org/wiki/Cpio
http://rpm.org/wiki/PackagerDocs/Macros
http://rpm.org/wiki/PackagerDocs/Macros

substituted in place by whatever the actual version number is that was entered in the Version
field of the SPEC.

Note: ​A handy utility of the ​rpm ​ command for packagers is the ​--eval ​ option which allows you
to ask rpm to evaluate a macro. If you see one in a SPEC file that you’re not familiar with, you
can quickly find out what it evaluates to.

$ rpm --eval %{_bindir}

/usr/bin

$ rpm --eval %{_libexecdir}

/usr/libexec

A common macro we will encounter as a packager is %{?dist} which signifies the “distribution
tag” allowing for a short textual representation of the distribution used for the build to be injected
into a text field.

For example:

$ rpm --eval %{?dist}

.el7

For more information, please reference the​ ​More on Macros​ section of the​ ​Appendix​.

Working with SPEC files
As an RPM Packager, you will likely spend a large majority of your time, when packaging
software, editing the SPEC file. The SPEC file is the recipe we use to tell ​rpmbuild ​ how to
actually perform a build. In this section we will discuss how to create and modify a spec file.

When it comes time to package new software, a new SPEC file must be created. We ​could​ write
one from scratch from memory but that sounds boring and tedious, so let’s not do that. The
good news is that we’re in luck and there’s a utility called rpmdev-newspec. This utility will
create a new SPEC file for us. We will just fill in the various directives or add new fields as
needed. This provides us with a nice baseline template.

If you have not already done so by way of another section of the guide, download the example
programs now and place them in your ​~/rpmbuild/SOURCES ​ directory.

● bello-0.1.tar.gz

● pello-0.1.1.tar.gz

● cello-1.0.tar.gz

● cello-output-first-patch.patch

 Copyright © 2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/appendix.html#more-macros
http://rpm-guide.readthedocs.io/en/latest/appendix.html#more-macros
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix

Let’s go ahead and create a SPEC file for each of our three implementations of our example
and then we will look at the SPEC files and make edits from there.

Note: ​Some programmer focused text editors will pre-populate a new file with the extension
.spec ​with a SPEC template of their own but ​rpmdev-newspec ​ is an editor-agnostic method
which is why it is chosen here.

$ cd ~/rpmbuild/SPECS

$ rpmdev-newspec bello

bello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec cello

cello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec pello

pello.spec created; type minimal, rpm version >= 4.11.

You will now find three SPEC files in your ​~/rpmbuild/SPECS/ ​ directory all matching the
names you passed to ​rpmdev-newspec ​ but with the ​.spec ​ file extension. Take a moment to
look at the files using your favorite text editor, the directives should look familiar from the​ ​What
is a SPEC File?​ section. We will discuss the exact information we will input into these fields in
the following sections that will focus specifically on each example.

Note: ​The ​rpmdev-newspec ​ utility does not use​ ​Linux​ Distribution specific guidelines or
conventions, however this document is targeted towards using conventions and guidelines for
Fedora​ and​ ​RHEL​ so you will notice we remove the use of ​rm $RPM_BUILD_ROOT ​as it is no
longer necessary to perform that task when building on​ ​RHEL​ 7.0 or newer or on​ ​Fedora
version 18 or newer. We also will favor the use of ​%{buildroot} ​notation over
$RPM_BUILD_ROOT ​ when referencing RPM’s Buildroot for consistency with all other defined or
provided macros throughout the SPEC

There are three examples below, each one is meant to be self-sufficient in instruction such that
you can jump to a specific one if it matches your needs for packaging. However, feel free to
read them straight through for a full exploration of packaging different kinds of software.

Software Name Explanation of example

bello Software written in a raw interpreted programming language does
doesn’t require a build but only needs files installed. If a pre-compiled
binary needs to be packaged, this method could also be used since the
binary would also just be a file.

Copyright ©2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#what-is-spec-file
http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#what-is-spec-file
http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#what-is-spec-file
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://getfedora.org/
https://getfedora.org/
https://www.redhat.com/en/technologies/linux-platforms
https://www.redhat.com/en/technologies/linux-platforms
https://www.redhat.com/en/technologies/linux-platforms
https://www.redhat.com/en/technologies/linux-platforms
https://getfedora.org/
https://getfedora.org/

pello Software written in a byte-compiled interpreted programming language
used to demonstrate the installation of a byte compile process and the
installation of the resulting pre-optimized files.

cello Software written in a natively compiled programming language to
demonstrate an common build and installation process using tooling for
compiling native code.

 Copyright © 2019 Red Hat, Inc.

bello

Our first SPEC file will be for our example written in​ ​bash​ shell script that you downloaded (or
you created a simulated upstream release in the​ ​General Topics and Background​ Section) and
placed it’s source code into ​~/rpmbuild/SOURCES/ ​ earlier. Let’s go ahead and open the file
~/rpmbuild/SPECS/bello.spec ​ and start filling in some fields.

The following is the output template we were given from rpmdev-newspec.

File Listing:​ bello.spec

Name: bello

Version:

Release: 1%{?dist}

Summary:

License:

URL:

Source0:

BuildRequires:

Requires:

%description

%prep

%setup -q

%build

%configure

make %{?_smp_mflags}

%install

rm -rf $RPM_BUILD_ROOT

%make_install

%files

%doc

Copyright ©2019 Red Hat, Inc.

https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org>

-

Let us begin with the first set of directives that ​rpmdev-newspec ​ has grouped together at the
top of the file: ​Name ​, ​Version ​, ​Release ​, ​Summary ​. The ​Name ​ is already specified because
we provided that information to the command line for ​rpmdev-newspec ​.

Let’s set the ​Version ​ to match what the “upstream” release version of the ​bello​ source code is,
which we can observe is ​0.1 ​ as set by the example code we downloaded (or we created in the
General Topics and Background​ Section).

The ​Release ​ is already set to ​1%{?dist} ​for us, the numerical value which is initially 1
should be incremented every time the package is updated for any reason, such as including a
new patch to fix an issue, but doesn’t have a new upstream release ​Version ​. When a new
upstream release happens (for example, bello version​ 0.2 ​ were released) then the Release
number should be reset to 1. The ​disttag​ of ​%{?dist} ​should look familiar from the previous
section’s coverage of​ ​RPM Macros​.

The ​Summary ​ should be a short, one-line explanation of what this software is.

After your edits, the first section of the SPEC file should resemble the following:

Name: bello

Version: 0.1

Release: 1%{?dist}

Summary: Hello World example implemented in bash script

Now, let’s move on to the second set of directives that rpmdev-newspec has grouped together
in our SPEC file: ​License ​, ​URL ​, ​Source0 ​.

The ​License ​ field is the​ ​Software License​ associated with the source code from the upstream
release. The exact format for how to label the License in your SPEC file will vary depending on
which specific RPM based​ ​Linux​ distribution guidelines you are following, we will use the
notation standards in the​ ​Fedora License Guidelines​ for this document and as such this field will
contain the text ​GPLv3+.

The ​URL ​ field is the upstream software’s website, not the source code download link but the
actual project, product, or company website where someone would find more information about
this particular piece of software. Since we’re just using an example, we will call this
https://example.com/bello ​. However, we will use the rpm macro variable of ​%{name} ​ in
its place for consistency and the resulting entry will be ​https://example.com/%{name} ​.

 Copyright © 2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#rpm-macros
http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#rpm-macros
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://fedoraproject.org/wiki/Licensing:Main
https://fedoraproject.org/wiki/Licensing:Main

The ​Source0 ​ field is where the upstream software’s source code should be able to be
downloaded from. This URL should link directly to the specific version of the source code
release that this RPM Package is packaging. Once again, since this is an example we will use
an example value: ​https://example.com/bello/releases/bello-0.1.tar.gz ​ and
while we might want to, we should note that this example URL has hard coded values in it that
are possible to change in the future and are potentially even likely to change such as the
release version ​0.1 ​. We can simplify this by only needing to update one field in the SPEC file
and allowing it to be reused. we will use the value
https://example.com/%{name}/releases/%{name}-%{version}.tar.gz ​ instead
of the hard coded examples string previously listed.

After your edits, the top portion of your spec file should look like the following:

Name: bello

Version: 0.1

Release: 1%{?dist}

Summary: Hello World example implemented in bash script

License: GPLv3+

URL: https://example.com/%{name}

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Next up we have ​BuildRequires ​ and ​Requires ​, each of which define something that is
required by the package. However, ​BuildRequires ​ is to tell ​rpmbuild ​ what is needed by
your package at ​build​ time and ​Requires ​ is what is needed by your package at ​run​ time. In
this example there is no ​build​ because the​ ​bash​ script is a raw interpreted programming
language so we will only be installing files into locations on the system, but it does require the
bash​ shell environment in order to execute so we will need to define ​bash ​ as a requirement
using the ​Requires ​ directive.

Since we don’t have a build step, we can simply omit the ​BuildRequires ​ directive. There is
no need to define is as “undefined” or otherwise, omitting its inclusion will suffice.

Something we need to add here since this is software written in an interpreted programming
language with no natively compiled extensions is a ​BuildArch ​ entry that is set to ​noarch ​ in
order to tell RPM that this package does not need to be bound to the processor architecture that
it is built using.

After your edits, the top portion of your spec file should look like the following:

Name: bello

Version: 0.1

Release: 1%{?dist}

Copyright ©2019 Red Hat, Inc.

https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/

Summary: Hello World example implemented in bash script

License: GPLv3+

URL: https://example.com/%{name}

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Requires: bash

BuildArch: noarch

The following directives can be thought of as “section headings” because they are directives
that can define multi-line, multi-instruction, or scripted tasks to occur. We will walk through them
one by one just as we did with the previous items.

The ​%description ​ should be a longer, more full length description of the software being
packaged than what is found in the Summary directive. For the sake of our example, this isn’t
really going to contain much content but this section can be a full paragraph or more than one
paragraph if desired.

The ​%prep ​ section is where we ​prepare​ our build environment or workspace for building. Most
often what happens here is the expansion of compressed archives of the source code,
application of patches, and potentially parsing of information provided in the source code that is
necessary in a later portion of the SPEC. In this section we will simply use the provided macro
%setup -q ​.

The ​%build ​ section is where we tell the system how to actually build the software we are
packaging. However, since this software doesn’t need to be built we can simply leave this
section blank (removing what was provided by the template).

The ​%install ​section is where we instruct ​rpmbuild ​ how to install our previously built
software (in the event of a build process) into the ​BUILDROOT ​ which is effectively a​ ​chroot​ base
directory with nothing in it and we will have to construct any paths or directory hierarchies that
we will need in order to install our software here in their specific locations. However, our RPM
Macros help us accomplish this task without having to hardcode paths. Since the only thing we
need to do in order to install ​bello ​ into this environment is create the destination directory for
the executable​ ​bash​ script file and then install the file into that directory, we can do so by using
the same ​install ​ command but we will make a slight modification since we are inside the
SPEC file and we will use the macro variable of ​%{name} ​ in it’s place for consistency.

The ​%install ​ section should look like the following after your edits:

%install

 Copyright © 2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/

mkdir -p %{buildroot}%{_bindir}

install -m 0755 %{name} %{buildroot}%{_bindir}/%{name}

The ​%files ​ section is where we provide the list of files that this RPM provides and where it’s
intended for them to live on the system that the RPM is installed upon. Note here that this isn’t
relative to the ​%{buildroot} ​but the full path for the files as they are expected to exist on the
end system after installation. Therefore, the listing for the ​bello ​ file we are installing will be
%{_bindir}/%{name} ​ (this would be​ /usr/bin/bello ​ if we weren’t using the rpm
macros).

Also within this section, you will sometimes need a built-in macro to provide context on a file.
This can be useful for Systems Administrators and end users who might want to query the
system with ​rpm ​ about the resulting package. The built-in macro we will use here is ​%license
which will tell ​rpmbuild ​ that this is a software license file in the package file manifest
metadata.

The ​%files ​section should look like the following after your edits:

%files

%license LICENSE

%{_bindir}/%{name}

The last section, ​%changelog ​ is a list of date-stamped entries that correlate to a specific
Version-Release of the package. This is not meant to be a log of what changed in the software
from release to release, but specifically to packaging changes. For example, if software in a
package needed patching or there was a change needed in the build procedure listed in the
%build ​ section that information would go here. Each change entry can contain multiple items
and each item should start on a new line and begin with a ​- ​character. Below is our example
entry:

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1

- First bello package

- Example second item in the changelog for version-release 0.1-1

Note the format above, the date-stamp will begin with a ​* ​ character, followed by the calendar
day of the week, the month, the day of the month, the year, then the contact information for the
RPM Packager. From there we have a - character before the Version-Release, which is an often
used convention but not a requirement. Then finally the Version-Release.

That’s it! We’ve written an entire SPEC file for ​bello​! In the next section we will cover how to
build the RPM!

Copyright ©2019 Red Hat, Inc.

The full SPEC file should now look like the following:

File Listing: ​bello.spec

Name: bello

Version: 0.1

Release: 1%{?dist}

Summary: Hello World example implemented in bash script

License: GPLv3+

URL: https://www.example.com/%{name}

Source0:

https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Requires: bash

BuildArch: noarch

%description

The long-tail description for our Hello World Example implemented in

bash script

%prep

%setup -q

%build

%install

mkdir -p %{buildroot}%{_bindir}

install -m 0755 %{name} %{buildroot}%{_bindir}/%{name}

%files

%license LICENSE

%{_bindir}/%{name}

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1

- First bello package

- Example second item in the changelog for version-release 0.1-1

 Copyright © 2019 Red Hat, Inc.

pello
Our second SPEC file will be for our example written in the​ ​Python​ programming language that
you downloaded (or you created a simulated upstream release in the​ ​General Topics and
Background​ Section) and placed it’s source code into ​~/rpmbuild/SOURCES/ ​ earlier. Let’s
go ahead and open the file ​~/rpmbuild/SPECS/pello.spec ​ and start filling in some fields.

Before we start down this path, we need to address something somewhat unique about
byte-compiled interpreted software. Since we will be byte-compiling this program, the​ ​shebang
is no longer applicable because the resulting file will not contain the entry. It is common practice
to either have a non-byte-compiled shell script that will call the executable or have a small bit of
the​ ​Python​ code that isn’t byte-compiled as the “entry point” into the program’s execution. This
might seem silly for our small example but for large software projects with many thousands of
lines of code, the performance increase of pre-byte-compiled code is sizeable.

Note: ​The creation of a script to call the byte-compiled code or having a non-byte-compiled
entry point into the software is something that upstream software developers most often
address before doing a release of their software to the world, however this is not always the
case and this exercise is meant to help address what to do in those situations. For more
information on how​ ​Python​ code is normally released and distributed please reference the
Software Packaging and Distribution​ documentation.

We will make a small shell script to call our byte compiled code to be the entry point into our
software. We will do this as a part of our SPEC file itself in order to demonstrate how you can
script actions inside the SPEC file. We will cover the specifics of this in the ​%install ​section
later.

Let’s go ahead and open the file ​~/rpmbuild/SPECS/pello.spec ​and start filling in some
fields.

The following is the output template we were given from ​rpmdev-newspec ​.

File Listing:​ pello.spec

Name: pello

Version:

Release: 1%{?dist}

Summary:

License:

Copyright ©2019 Red Hat, Inc.

https://www.python.org/
https://www.python.org/
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://docs.python.org/2/library/distribution.html
https://docs.python.org/2/library/distribution.html

URL:

Source0:

BuildRequires:

Requires:

%description

%prep

%setup -q

%build

%configure

make %{?_smp_mflags}

%install

rm -rf $RPM_BUILD_ROOT

%make_install

%files

%doc

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org>

-

Just as with the first example, let’s begin with the first set of directives that ​rpmdev-newspec
has grouped together at the top of the file: ​Name ​, ​Version ​, ​Release ​, ​Summary ​. The ​Name ​ is
already specified because we provided that information to the command line for
rpmdev-newspec ​.

Let’s set the ​Version ​ to match what the “upstream” release version of the ​pello​ source code is,
which we can observe is​ 0.1.1 ​as set by the example code we downloaded (or we created in
the​ ​General Topics and Background​ Section).

The ​Release ​ is already set to ​1%{?dist} ​ for us, the numerical value which is initially ​1
should be incremented every time the package is updated for any reason, such as including a
new patch to fix an issue, but doesn’t have a new upstream release ​Version ​. When a new
upstream release happens (for example, pello version ​0.1.2 ​ were released) then the ​Release

 Copyright © 2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background

number should be reset to ​1 ​. The ​disttag​ of ​%{?dist} ​ should look familiar from the previous
section’s coverage of​ ​RPM Macros​.

The ​Summary ​ should be a short, one-line explanation of what this software is.

After your edits, the first section of the SPEC file should resemble the following:

Name: pello

Version: 0.1.1

Release: 1%{?dist}

Summary: Hello World example implemented in Python

Now, let’s move on to the second set of directives that ​rpmdev-newspec ​ has grouped together
in our SPEC file: ​License ​, ​URL ​, ​Source0 ​.

The ​License ​ field is the​ ​Software License​ associated with the source code from the upstream
release. The exact format for how to label the License in your SPEC file will vary depending on
which specific RPM based​ ​Linux​ distribution guidelines you are following, we will use the
notation standards in the​ ​Fedora License Guidelines​ for this document and as such this field will
contain the text ​GPLv3+.

The ​URL ​ field is the upstream software’s website, not the source code download link but the
actual project, product, or company website where someone would find more information about
this particular piece of software. Since we’re just using an example, we will call this
https://example.com/pello ​. However, we will use the rpm macro variable of ​%{name} ​ in
it’s place for consistency.

The ​Source0 ​ field is where the upstream software’s source code should be able to be
downloaded from. This URL should link directly to the specific version of the source code
release that this RPM Package is packaging. Once again, since this is an example we will use
an example value: ​https://example.com/pello/releases/pello-0.1.1.tar.gz

We should note that this example URL has hard coded values in it that are possible to change
in the future and are potentially even likely to change such as the release version ​0.1.1 ​. We
can simplify this by only needing to update one field in the SPEC file and allowing it to be
reused. we will use the value
https://example.com/%{name}/releases/%{name}-%{version}.tar.gz ​ instead
of the hard coded examples string previously listed.

Copyright ©2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#rpm-macros
http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#rpm-macros
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://fedoraproject.org/wiki/Licensing:Main
https://fedoraproject.org/wiki/Licensing:Main

After your edits, the top portion of your spec file should look like the following:

Name: pello

Version: 0.1.1

Release: 1%{?dist}

Summary: Hello World example implemented in Python

License: GPLv3+

URL: https://example.com/%{name}

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Next up we have ​BuildRequires ​ and ​Requires ​, each of which define something that is
required by the package. However, ​BuildRequires ​ is to tell ​rpmbuild ​ what is needed by
your package at ​build​ time and ​Requires ​ is what is needed by your package at ​run​ time.

In this example we will need the ​python ​ package in order to perform the byte-compile build
process. We will also need the ​python ​ package in order to execute the byte-compiled code at
runtime and therefore need to define ​python ​ as a requirement using the ​Requires ​ directive.
We will also need the ​bash ​ package in order to execute the small entry-point script we will use
here.

Something we need to add here since this is software written in an interpreted programming
language with no natively compiled extensions is a ​BuildArch ​ entry that is set to ​noarch ​ in
order to tell RPM that this package does not need to be bound to the processor architecture that
it is built using.

After your edits, the top portion of your spec file should look like the following:

Name: pello

Version: 0.1

Release: 1%{?dist}

Summary: Hello World example implemented in Python

License: GPLv3+

URL: https://example.com/%{name}

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

BuildRequires: python

Requires: python

Requires: bash

 Copyright © 2019 Red Hat, Inc.

BuildArch: noarch

The following directives can be thought of as “section headings” because they are directives
that can define multi-line, multi-instruction, or scripted tasks to occur. We will walk through them
one by one just as we did with the previous items.

The ​%description ​ should be a longer, more full length description of the software being
packaged than what is found in the Summary directive. For the sake of our example, this isn’t
really going to contain much content but this section can be a full paragraph or more than one
paragraph if desired.

The ​%prep ​ section is where we ​prepare​ our build environment or workspace for building. Most
often what happens here is the expansion of compressed archives of the source code,
application of patches, and potentially parsing of information provided in the source code that is
necessary in a later portion of the SPEC. In this section we will simply use the provided macro
%setup -q ​.

The ​%build ​ section is where we tell the system how to actually build the software we are
packaging. Here we will perform a byte-compilation of our software. For those who read the
General Topics and Background​ Section, this portion of the example should look familiar. The
%build ​ section of our SPEC file should look as follows.

%build

python -m compileall pello.py

The ​%install ​ section is where we instruct ​rpmbuild ​ how to install our previously built
software into the ​BUILDROOT ​ which is effectively a​ ​chroot​ base directory with nothing in it and
we will have to construct any paths or directory hierarchies that we will need in order to install
our software here in their specific locations. However, our RPM Macros help us accomplish this
task without having to hardcode paths.

We had previously discussed that since we will lose the context of a file with the​ ​shebang​ line in
it when we byte compile that we will need to create a simple wrapper script in order to
accomplish that task. There are many options on how to accomplish this including, but not
limited to, making a separate script and using that as a separate ​SourceX ​ directive. The option
we’re going to show in this example, however, is to create the file in-line in the SPEC file. The
reason for showing the example option that we are is simply to demonstrate that the SPEC file
itself is scriptable. What we’re going to do is create a small “wrapper script” which will execute
the​ ​Python​ byte-compiled code by using a​ ​here document​. We will also need to actually install
the byte-compiled file into a library directory on the system such that it can be accessed.

Copyright ©2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://www.python.org/
https://www.python.org/
https://en.wikipedia.org/wiki/Here_document
https://en.wikipedia.org/wiki/Here_document

Note: ​You will notice below that we are hard coding the library path. There are various methods
to avoid needing to do this, many of which are addressed in the​ ​Appendix​, under the​ ​More on
Macros​ section, and are specific to the programming language in which the software that is
being packaged was written in. In this example we hard code the path for simplicity as to not
cover too many topics simultaneously.

The %install section should look like the following after your edits:

%install

mkdir -p %{buildroot}%{_bindir}

mkdir -p %{buildroot}/usr/lib/%{name}

cat > %{buildroot}%{_bindir}/%{name} <<-EOF

#!/bin/bash

/usr/bin/python /usr/lib/%{name}/%{name}.pyc

EOF

chmod 0755 %{buildroot}%{_bindir}/%{name}

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

The ​%files ​ section is where we provide the list of files that this RPM provides and where it’s
intended for them to live on the system that the RPM is installed upon. Note here that this isn’t
relative to the ​%{buildroot} ​ but the full path for the files as they are expected to exist on the
end system after installation. Therefore, the listing for the ​pello ​ file we are installing will be
%{_bindir}/pello ​. We will also need to provide a ​%dir ​ listing to define that this package
“owns” the library directory we created as well as all the files we placed in it.
Also within this section, you will sometimes need a built-in macro to provide context on a file.
This can be useful for Systems Administrators and end users who might want to query the
system with ​rpm ​ about the resulting package. The built-in macro we will use here is ​%license
which will tell rpmbuild that this is a software license file in the package file manifest metadata.

The ​%files ​section should look like the following after your edits:

%files

%license LICENSE

%dir /usr/lib/%{name}/

%{_bindir}/%{name}

/usr/lib/%{name}/%{name}.py*

The last section, ​%changelog ​ is a list of date-stamped entries that correlate to a specific
Version-Release of the package. This is not meant to be a log of what changed in the software
from release to release, but specifically to packaging changes. For example, if software in a

 Copyright © 2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
http://rpm-guide.readthedocs.io/en/latest/appendix.html#more-macros
http://rpm-guide.readthedocs.io/en/latest/appendix.html#more-macros
http://rpm-guide.readthedocs.io/en/latest/appendix.html#more-macros

package needed patching or there was a change needed in the build procedure listed in the
%build ​section that information would go here. Each change entry can contain multiple items
and each item should start on a new line and begin with a ​- ​ character. Below is our example
entry:

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1.1-1

- First pello package

- Example second item in the changelog for version-release 0.1.1-1

Note the format above, the date-stamp will begin with a * character, followed by the calendar
day of the week, the month, the day of the month, the year, then the contact information for the
RPM Packager. From there we have a - character before the Version-Release, which is an often
used convention but not a requirement. Then finally the Version-Release.
That’s it! We’ve written an entire SPEC file for ​pello​! In the next section we will cover how to
build the RPM!

The full SPEC file should now look like the following:

File Listing: ​pello.spec

Name: pello

Version: 0.1.1

Release: 1%{?dist}

Summary: Hello World example implemented in Python

License: GPLv3+

URL: https://www.example.com/%{name}

Source0:

https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

BuildRequires: python

Requires: python

Requires: bash

BuildArch: noarch

%description

The long-tail description for our Hello World Example implemented in

Python

%prep

%setup -q

%build

Copyright ©2019 Red Hat, Inc.

python -m compileall %{name}.py

%install

mkdir -p %{buildroot}%{_bindir}

mkdir -p %{buildroot}/usr/lib/%{name}

cat > %{buildroot}%{_bindir}/%{name} <<-EOF

#!/bin/bash

/usr/bin/python /usr/lib/%{name}/%{name}.pyc

EOF

chmod 0755 %{buildroot}%{_bindir}/%{name}

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

%files

%license LICENSE

%dir /usr/lib/%{name}/

%{_bindir}/%{name}

/usr/lib/%{name}/%{name}.py*

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1.1-1

- First pello package

- Example second item in the changelog for version-release 0.1.1-1

 Copyright © 2019 Red Hat, Inc.

cello
Our third SPEC file will be for our example written in the​ ​C​ programming language that we
created a simulated upstream release of previously (or you downloaded) and placed it’s source
code into ​~/rpmbuild/SOURCES/ ​earlier.

Let’s go ahead and open the file​ ~/rpmbuild/SPECS/cello.spec ​ and start filling in some
fields.

The following is the output template we were given from ​rpmdev-newspec ​.

File Listing: ​cello.spec

Name: cello

Version:

Release: 1%{?dist}

Summary:

License:

URL:

Source0:

BuildRequires:

Requires:

%description

%prep

%setup -q

%build

%configure

make %{?_smp_mflags}

%install

rm -rf $RPM_BUILD_ROOT

%make_install

Copyright ©2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29

%files

%doc

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org>

-

Just as with the previous examples, let’s begin with the first set of directives that
r​pmdev-newspec ​ has grouped together at the top of the file: ​Name ​, ​Version ​, ​Release ​,
Summary ​. The ​Name ​ is already specified because we provided that information to the command
line for ​rpmdev-newspec ​.

Let’s set the ​Version ​ to match what the “upstream” release version of the ​cello​ source code is,
which we can observe is ​1.0 ​ as set by the example code we downloaded (or we created in the
General Topics and Background​ Section).

The ​Release ​ is already set to ​1%{?dist} ​ for us, the numerical value which is initially ​1
should be incremented every time the package is updated for any reason, such as including a
new patch to fix an issue, but doesn’t have a new upstream release ​Version ​. When a new
upstream release happens (for example, cello version ​2.0 ​ were released) then the ​Release
number should be reset to ​1 ​. The ​disttag​ of %{?dist} should look familiar from the previous
section’s coverage of​ ​RPM Macros​.

The ​Summary ​ should be a short, one-line explanation of what this software is.

After your edits, the first section of the SPEC file should resemble the following:

Name: cello

Version: 1.0

Release: 1%{?dist}

Summary: Hello World example implemented in C

Now, let’s move on to the second set of directives that ​rpmdev-newspec ​ has grouped together
in our SPEC file: ​License ​, ​URL ​, ​Source0 ​. However, we will add one to this grouping as it is
closely related to the ​Source0 ​ and that is our ​Patch0 ​ which will list the first patch we need
against our software.
The ​License ​ field is the​ ​Software License​ associated with the source code from the upstream
release. The exact format for how to label the License in your SPEC file will vary depending on
which specific RPM based​ ​Linux​ distribution guidelines you are following, we will use the
notation standards in the​ ​Fedora License Guidelines​ for this document and as such this field will
contain the text ​GPLv3+.

 Copyright © 2019 Red Hat, Inc.

http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/general-background.html#general-background
http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#rpm-macros
http://rpm-guide.readthedocs.io/en/latest/rpm-guide.html#rpm-macros
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Software_license
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://fedoraproject.org/wiki/Licensing:Main
https://fedoraproject.org/wiki/Licensing:Main

The ​URL ​ field is the upstream software’s website, not the source code download link but the
actual project, product, or company website where someone would find more information about
this particular piece of software. Since we’re just using an example, we will call this
https://example.com/cello ​. However, we will use the rpm macro variable of ​%{name} ​ in
it’s place for consistency.

The ​Source0 ​ field is where the upstream software’s source code should be able to be
downloaded from. This URL should link directly to the specific version of the source code
release that this RPM Package is packaging. Once again, since this is an example we will use
an example value: ​https://example.com/cello/releases/cello-1.0.tar.gz

We should note that this example ​URL ​ has hard coded values in it that are possible to change in
the future and are potentially even likely to change such as the release version ​1.0 ​. We can
simplify this by only needing to update one field in the SPEC file and allowing it to be reused. we
will use the value
https://example.com/%{name}/releases/%{name}-%{version}.tar.gz ​ instead
of the hard coded examples string previously listed.

The next item is to provide a listing for the ​.patch ​file we created earlier such that we can
apply it to the code later in the ​%setup ​ section. We will need to add a listing of ​Patch0:
cello-output-first-patch.patch ​.

After your edits, the top portion of your spec file should look like the following:

Name: cello

Version: 1.0

Release: 1%{?dist}

Summary: Hello World example implemented in C

License: GPLv3+

URL: https://example.com/%{name}

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

Patch0: cello-output-first-patch.patch

Next up we have ​BuildRequires ​ and ​Requires ​, each of which define something that is
required by the package. However, ​BuildRequires ​ is to tell rpmbuild what is needed by your
package at ​build​ time and ​Requires ​ is what is needed by your package at ​run​ time.
In this example we will need the ​gcc ​ and ​make ​ packages in order to perform the compilation
build process. Runtime requirements are fortunately handled for us by rpmbuild because this
program does not require anything outside of the core​ ​C​ standard libraries and we therefore will
not need to define anything by hand as a ​Requires ​ and can omit that directive.

Copyright ©2019 Red Hat, Inc.

https://example.com/cello/releases/cello-1.0.tar.gz
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29

After your edits, the top portion of your spec file should look like the following:

Name: cello

Version: 0.1

Release: 1%{?dist}

Summary: Hello World example implemented in C

License: GPLv3+

URL: https://example.com/%{name}

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz

BuildRequires: gcc

BuildRequires: make

The following directives can be thought of as “section headings” because they are directives
that can define multi-line, multi-instruction, or scripted tasks to occur. We will walk through them
one by one just as we did with the previous items.

The ​%description ​ should be a longer, more full length description of the software being
packaged than what is found in the ​Summary ​ directive. For the sake of our example, this isn’t
really going to contain much content but this section can be a full paragraph or more than one
paragraph if desired.

The ​%prep ​section is where we ​prepare​ our build environment or workspace for building. Most
often what happens here is the expansion of compressed archives of the source code,
application of patches, and potentially parsing of information provided in the source code that is
necessary in a later portion of the SPEC. In this section we will simply use the provided macro
%setup -q ​.

The ​%build ​ section is where we tell the system how to actually build the software we are
packaging. Since wrote a simple ​Makefile ​ for our​ ​C​ implementation, we can simply use the
GNU make​ command provided by ​rpmdev-newspec ​. However, we need to remove the call to
%configure ​ because we did not provide a​ ​configure script​. The ​%build ​ section of our SPEC
file should look as follows.

%build

make %{?_smp_mflags}

The ​%install ​ section is where we instruct ​rpmbuild ​ how to install our previously built
software into the ​BUILDROOT ​ which is effectively a​ ​chroot​ base directory with nothing in it and
we will have to construct any paths or directory hierarchies that we will need in order to install
our software here in their specific locations. However, our RPM Macros help us accomplish this
task without having to hardcode paths.

 Copyright © 2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C_%28programming_language%29
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/Configure_script
https://en.wikipedia.org/wiki/Configure_script
https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot

Once again, since we have a simple ​Makefile ​ the installation step can be accomplished easily
by leaving in place the ​%make_install ​macro that was again provided for us by the
rpmdev-newspec ​ command.

The ​%install ​section should look like the following after your edits:

%install

%make_install

The ​%files ​ section is where we provide the list of files that this RPM provides and where it’s
intended for them to live on the system that the RPM is installed upon. Note here that this isn’t
relative to the ​%{buildroot} ​but the full path for the files as they are expected to exist on the
end system after installation. Therefore, the listing for the cello file we are installing will be
%{_bindir}/cello ​.

Also within this section, you will sometimes need a built-in macro to provide context on a file.
This can be useful for Systems Administrators and end users who might want to query the
system with ​rpm ​ about the resulting package. The built-in macro we will use here is ​%license
which will tell ​rpmbuild ​ that this is a software license file in the package file manifest
metadata.

The ​%files ​ section should look like the following after your edits:

%files

%license LICENSE

%{_bindir}/%{name}

The last section, ​%changelog ​ is a list of date-stamped entries that correlate to a specific
Version-Release of the package. This is not meant to be a log of what changed in the software
from release to release, but specifically to packaging changes. For example, if software in a
package needed patching or there was a change needed in the build procedure listed in the
%build ​ section that information would go here. Each change entry can contain multiple items
and each item should start on a new line and begin with a ​- ​ character. Below is our example
entry:

%changelog

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 1.0-1

- First cello package

Note the format above, the date-stamp will begin with a * character, followed by the calendar
day of the week, the month, the day of the month, the year, then the contact information for the

Copyright ©2019 Red Hat, Inc.

RPM Packager. From there we have a - character before the Version-Release, which is an often
used convention but not a requirement. Then finally the Version-Release.

That’s it! We’ve written an entire SPEC file for ​cello​! In the next section we will cover how to
build the RPM!
The full SPEC file should now look like the following:

File Listing:​ cello.spec

Name: cello

Version: 1.0

Release: 1%{?dist}

Summary: Hello World example implemented in C

License: GPLv3+

URL: https://www.example.com/%{name}

Source0:

https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Patch0: cello-output-first-patch.patch

BuildRequires: gcc

BuildRequires: make

%description

The long-tail description for our Hello World Example implemented in

C

%prep

%setup -q

%patch0

%build

make %{?_smp_mflags}

%install

%make_install

%files

%license LICENSE

%{_bindir}/%{name}

%changelog

 Copyright © 2019 Red Hat, Inc.

* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 1.0-1

- First cello package

Building RPMS
When building RPMs there are is one main command, which is ​rpmbuild ​ and we will use that
throughout the guide. It has been eluded to in various sections in the guide but now we’re
actually going to dig in and get our hands dirty.

We will cover a couple different combinations of arguments we can pass to ​rpmbuild ​ based
on scenario and desired outcome but we will focus primarily on the two main targets of building
an RPM and that is creating Source and Binary RPMs.

One of the things you may notice about ​rpmbuild ​ is that it expects the directory structure
created in a certain way and for various items such as source code to exist within the context of
that directory structure. Luckily, this is the same directory structure that was setup by the
rpmdev-setuptree ​ utility that we used previously to setup our RPM workspace and we have
been placing files in the correct place throughout the duration of the guide.

Source RPMs
Before we actually build a Source RPM, let’s quickly address why we would want to do this.
First, we might want to preserve the exact source of a ​Name-Version-Release ​ of RPM that
we deployed to our environment that included the exact SPEC file, the source code, and all
relevant patches. This can be useful when looking back in history and/or debugging if something
has gone wrong. Another reason is if we want to build a Binary RPM on a different hardware
platform or​ ​architecture​.

In order to create a Source RPM we need to pass the “build source” or ​-bs ​ option to ​rpmbuild
and we will provide a SPEC file as the argument. We will do so for each of our examples we’ve
created above.

$ cd ~/rpmbuild/SPECS

$ rpmbuild -bs bello.spec

Wrote: /home/admiller/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

$ rpmbuild -bs pello.spec

Wrote: /home/admiller/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

$ rpmbuild -bs cello.spec

Wrote: /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Copyright ©2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture

That’s it! That’s all there is to building a Source RPM or SRPM. Do note the directory that it was
placed in though, this is also a part of the directory hierarchy that we covered previously.

Now it’s time to move on to Binary RPMs!

Binary RPMS
When building Binary RPMs there are a few methods by which we could do this, we could
“rebuild” a SRPM by passing the ​--rebuild ​ option to ​rpmbuild ​. We could tell rpmbuild to
“build binary” or ​-bb ​ and pass a SPEC file as the argument similar to how we did for the Source
RPMs.

Rebuild
Let’s first rebuild each of our examples. Below you will see the example output generated from
rebuilding each example SRPM. You will notice the output will vary differently based on the
specific example you view and that the amount of detail provided is quite verbose. This maybe
seem daunting at first but as you become a seasoned RPM Packager you will learn to
appreciate and even welcome this level of detail as it can prove to be very valuable when
diagnosing issues.

One important distinction to make about when ​rpmbuild ​ is invoked with the ​--rebuild
argument is that it actually installs the contents of the SRPM into your ​~/rpmbuild ​directory
which will install the SPEC file and source code, then the build is performed and the SPEC file
and Source code are removed. This might seem odd at first, but know that this is expected
behavior and you can perform a ​--recompile ​ which will not do the “clean up” operation at the
end. We selected to use ​--rebuild ​ in this guide to demonstrate how this happens and how
you can “recover” from it to get the SPEC files and SOURCES back which is covered in the
following section.

The commands required for each are as follows, with detailed output provided for each below:

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Now you’ve built RPMs!

You will now find the resulting Binary RPMs in ​~/rpmbuild/RPMS/ ​depending on your
architecture​ and/or if the package was ​noarch ​.

 Copyright © 2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture

At the end of each of these commands you will find that there are no longer SPEC files or
contents in SOURCES for the specific SRPMs that you rebuilt because of how ​--rebuild
cleans up after itself. We can resolve this by executing the following​ ​rpm​ commands which will
perform an install of the SRPMs. You will want to do this after running a ​--rebuild ​ if you want
to continue to interact with the SPEC and SOURCES which we will want to do for the duration of
this guide.

$ rpm -Uvh ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

Updating / installing...

 1:bello-0.1-1.el7 ################################# [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

Updating / installing...

 1:pello-0.1.1-1.el7 ################################# [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Updating / installing...

 1:cello-1.0-1.el7 ################################# [100%]

Note: ​Some of the output below has been omitted for brevity and has been marked by an
ellipsis (​... ​).

bello
$ rpmbuild --rebuild ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

Installing /home/admiller/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.GHTHCO

Wrote: /home/admiller/rpmbuild/RPMS/noarch/bello-0.1-1.el7.noarch.rpm

...

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.R9eRPW

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ cd bello-0.1

+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64

+ exit 0

Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.S59sAf

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ rm -rf bello-0.1

+ exit 0

pello
$ rpmbuild --rebuild ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

Installing /home/admiller/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.kRf2qV

...

Copyright ©2019 Red Hat, Inc.

http://rpm.org/
http://rpm.org/

Wrote: /home/admiller/rpmbuild/RPMS/noarch/pello-0.1.1-1.el7.noarch.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.kZTRbM

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ cd pello-0.1.1

+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64

+ exit 0

Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.WChx3z

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ rm -rf pello-0.1.1

+ exit 0

cello
$ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Installing /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.ySAWzh

...

Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm

Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-debuginfo-1.0-1.el7.x86_64.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.oexkNU

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ cd cello-1.0

+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64

+ exit 0

Executing(--clean): /bin/sh -e /var/tmp/rpm-tmp.ENKUE1

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ rm -rf cello-1.0

+ exit 0

Build Binary

Next up, let’s “build binary” for each of our examples. Just as in the previous example, you will
again see the example output generated from building each example. Similarly you will notice
the output will vary differently based on the specific example you view and that the amount of
detail provided is quite verbose.

The commands required for each are as follows, with detailed output provided for each below:

$ rpmbuild -bb ~/rpmbuild/SPECS/bello.spec

$ rpmbuild -bb ~/rpmbuild/SPECS/pello.spec

 Copyright © 2019 Red Hat, Inc.

$ rpmbuild -bb ~/rpmbuild/SPECS/cello.spec

Now you’ve built RPMs!

You will now find the resulting Binary RPMs in ​~/rpmbuild/RPMS/ ​depending on your
architecture​ and/or if the package was ​noarch ​.

Note: ​Some of the output below has been omitted for brevity and has been marked by an
ellipsis (​... ​).

bello
$ rpmbuild -bb ~/rpmbuild/SPECS/bello.spec

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.aaCBH0

...

Wrote: /home/admiller/rpmbuild/RPMS/noarch/bello-0.1-1.el7.noarch.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.74OMCd

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ cd bello-0.1

+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/bello-0.1-1.el7.x86_64

+ exit 0

pello
$ rpmbuild -bb pello.spec

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.dvOeYv

...

Wrote: /home/admiller/rpmbuild/RPMS/noarch/pello-0.1.1-1.el7.noarch.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.4tTJSw

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ cd pello-0.1.1

+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/pello-0.1.1-1.el7.x86_64

+ exit 0

cello
$ rpmbuild -bb ~/rpmbuild/SPECS/cello.spec

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.FveYdS

...

Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm

Wrote: /home/admiller/rpmbuild/RPMS/x86_64/cello-debuginfo-1.0-1.el7.x86_64.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.ZRORXv

+ umask 022

+ cd /home/admiller/rpmbuild/BUILD

+ cd cello-1.0

Copyright ©2019 Red Hat, Inc.

https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture

+ /usr/bin/rm -rf /home/admiller/rpmbuild/BUILDROOT/cello-1.0-1.el7.x86_64

+ exit 0

Checking RPMs For Sanity
Once we have created a package, we may desire to perform some sort of checks for quality on
the package itself and not necessarily just the software we’re delivering with the RPM.

For this the main tool of choice for RPM Packagers is​ ​rpmlint​ which performs many sanity and
error checks that help assist with packaging in more maintainable and less error prone fashion.
Something to keep in mind is that this is going to report things based on very strict guidelines
and by way of static analysis. There is going to be lack of perspective by the​ ​rpmlint​ tool and
what your primary objective is and thus it is sometimes alright to allow Errors or Warnings
reported by​ ​rpmlint​ to persist in your packages, but the key is to understand ​why​ we would
allow these to persist. In the following sections we will explore a couple examples of just that.
Another really useful feature of​ ​rpmlint​ is that we can use it to check against Binary RPMs,
Source RPMs, and SPEC files so that it can be used during all stages of packaging and not just
after the fact. We will show examples of each below.

Note: ​For each example below we run​ ​rpmlint​ without any options, if you would like detailed
explanations of what each Error or Warning means, then you can pass the -i option and run
each command as rpmlint -i instead of just rpmlint. The shorter output is selected for brevity of
the document.

bello
Let’s get started by looking at some output and dive into each set of output.

$ rpmlint bello.spec

bello.spec: W: invalid-url Source0:

https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP Error 404: Not

Found

0 packages and 1 specfiles checked; 0 errors, 1 warnings.

When checking ​bello​‘s spec file we can see that we only have one warning and that is the URL
listed in the ​Source0 ​ directive can not be reached which is something that we would expect
given that example.com doesn’t actually exist out in the real world and we’ve not setup a system
with a local DNS entry to point to this URL. Since we know why the Warning was emitted and
that it was expected, this can be safely ignored.

$ rpmlint ~/rpmbuild/SRPMS/bello-0.1-1.el7.src.rpm

bello.src: W: invalid-url URL: https://www.example.com/bello HTTP Error 404:

Not Found

 Copyright © 2019 Red Hat, Inc.

https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint

bello.src: W: invalid-url Source0:

https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP Error 404: Not

Found

1 packages and 0 specfiles checked; 0 errors, 2 warnings.

When checking ​bello​‘s SRPM we can see very similar output from the check against the spec
file but we also see that the check against the SRPM looks for the ​URL ​ directive as well as the
Source0 ​ directive, neither can be reached but as we know is expected and these can also be
safely ignored.

$ rpmlint ~/rpmbuild/RPMS/noarch/bello-0.1-1.el7.noarch.rpm

bello.noarch: W: invalid-url URL: https://www.example.com/bello HTTP Error 404:

Not Found

bello.noarch: W: no-documentation

bello.noarch: W: no-manual-page-for-binary bello

1 packages and 0 specfiles checked; 0 errors, 3 warnings.

Now things will change a bit when looking at Binary RPMs as the​ ​rpmlint​ utility is going to check
for other things that should be commonly found in Binary RPMs such as documentation and/or
man pages​ as well as things like consistent use of the​ ​Filesystem Hierarchy Standard​. As we
can see, this is exactly what is being reported and we know that there are no​ ​man pages​ or
other documentation because we didn’t provide any. Also, once again our old friend the ​HTTP
Error 404: Not Found ​ is present but we’re well aware as to why.

Other than our few items that we are carrying over because this is a simple example, our RPM
is passing the​ ​rpmlint​ checks and all is well!

pello
Next up, let’s look at some more output and dive into it one by one.

$ rpmlint pello.spec

pello.spec:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}

pello.spec:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc

pello.spec:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/

pello.spec:43: E: hardcoded-library-path in /usr/lib/%{name}/

pello.spec:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*

pello.spec: W: invalid-url Source0:

https://www.example.com/pello/releases/pello-0.1.1.tar.gz HTTP Error 404: Not

Found

0 packages and 1 specfiles checked; 5 errors, 1 warnings.

Now, I know you might be thinking “That’s a lot of errors, this example must be really wrong”
and you would be correct but it is wrong for good reason. The goal here is two fold, first to make
a byte-compiled example that was not too complicated and allowed to demonstrate some

Copyright ©2019 Red Hat, Inc.

https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint

scripting in a SPEC file and second to show some examples of what we can expect​ ​rpmlint​ to
report other than just a simple URL missing.

Looking at the output from the check on ​pello​‘s spec file we can see that we have a new Error
entitled ​hardcoded-library-path ​and it was mentioned during the previous section that
this was known to be incorrect but we were doing it anyways. The reality is that this is a half
truth. Almost always, you should be using the ​%{_libdir} ​rpm macro or some other more
sophisticated macro (more on this in the​ ​Appendix​. The reason we do not use ​%{_libdir} ​ in
this instance is because that macro will expand to be either ​/usr/lib/ ​ or ​/usr/lib64/
depending on a 32-bit or 64-bit​ ​architecture​. Since we are packaging ​noarch ​ that would have
become problematic for one arch or the other in the event of a compile on one, run on the other.
We also don’t dive into more clever rpm macros as they are out of scope when trying to learn
RPM Packaging at and introductory level, which is already a feat of it’s own. For the sake of this
example, we can ignore this Error but in a real packaging scenario you should either have a
reasonable justification or find the appropriate rpm macro to use.

Once again, the ​URL ​ listed in the ​Source0 ​ directive can not be reached which is something
that we expect for the same reasons given in the previous example. Since we know why the
Warning was emitted and that it was expected, this can be safely ignored also.

$ rpmlint ~/rpmbuild/SRPMS/pello-0.1.1-1.el7.src.rpm

pello.src: W: invalid-url URL: https://www.example.com/pello HTTP Error 404:

Not Found

pello.src:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}

pello.src:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc

pello.src:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/

pello.src:43: E: hardcoded-library-path in /usr/lib/%{name}/

pello.src:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*

pello.src: W: invalid-url Source0:

https://www.example.com/pello/releases/pello-0.1.1.tar.gz HTTP Error 404: Not

Found

1 packages and 0 specfiles checked; 5 errors, 2 warnings.

When checking ​pello​‘s SRPM we can see very similar output from the check against the spec
file but we also see that the check against the SRPM looks for the ​URL ​ directive as well as the
Source0 ​ directive, neither can be reached but as we know this is expected and these can also
be safely ignored.

Once again, the explanation for the ​hardcoded-library-path ​ is the same as we covered
previously in the ​rpmlint ​ output for the SPEC file.

$ rpmlint ~/rpmbuild/RPMS/noarch/pello-0.1.1-1.el7.noarch.rpm

pello.noarch: W: invalid-url URL: https://www.example.com/pello HTTP Error 404:

Not Found

 Copyright © 2019 Red Hat, Inc.

https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Microarchitecture

pello.noarch: W: only-non-binary-in-usr-lib

pello.noarch: W: no-documentation

pello.noarch: E: non-executable-script /usr/lib/pello/pello.py 0644L

/usr/bin/env

pello.noarch: W: no-manual-page-for-binary pello

1 packages and 0 specfiles checked; 1 errors, 4 warnings.

As with the previous example, things change a bit when looking at Binary RPMs as the​ ​rpmlint
utility is now checking for other things that should be commonly found in Binary RPMs such as
documentation and/or​ ​man pages​ as well as things like consistent use of the​ ​Filesystem
Hierarchy Standard​. As we can see, this is exactly what is being reported and we know that
there are no​ ​man pages​ or other documentation because we didn’t provide any. Also, once
again our old friend the ​HTTP Error 404: Not Found ​is present but we’re well aware as
to why.

The two new ones are ​non-executable-script ​ and ​only-non-binary-in-usr-lib ​.

First is ​W: only-non-binary-in-usr-lib ​ which means that we’ve provided only
non-binary artifacts in ​/usr/lib/ ​which is normally reserved for shared object files which are
binary data files and​ ​rpmlint​ therefore expects at least some of our files in ​/usr/lib/ ​ to be
binary. This again rounds back to compliance with the​ ​Filesystem Hierarchy Standard​ as well as
files ending up in incorrect or inconsistent locations because we are not using the appropriate
rpm macros. This is of course by design ​only​ for the course of this example.

Next up is ​E: non-executable-script /usr/lib/pello/pello.py 0644L
/usr/bin/env ​ which is telling us that ​rpmlint ​ has found a file with a​ ​shebang​ directive
which would normally be an executable and have permissions more likely to be ​0755 ​ instead of
0644 ​ (meaning it can not be executed), but since we’re simply leaving it as an install artifact
reference library because we used this as an example for doing byte-compilation at build time
this can also be safely ignored.

Other than our items that we are carrying over for the purposes of the example, our RPM is
passing the​ ​rpmlint​ checks and all is well!

cello
Next up, let’s look at some more output and dive into each.

$ rpmlint ~/rpmbuild/SPECS/cello.spec

/home/admiller/rpmbuild/SPECS/cello.spec: W: invalid-url Source0:

https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not

Found

0 packages and 1 specfiles checked; 0 errors, 1 warnings.

Copyright ©2019 Red Hat, Inc.

https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://en.wikipedia.org/wiki/Shebang_%28Unix%29
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint

When checking ​cello​‘s spec file we can see that things appear much more as they did in our first
example and we only have one warning. This is again that the ​URL ​ listed in the ​Source0
directive can not be reached which is something expected. Since we know why the ​Warning
was emitted and that it was expected, this can be safely ignored.

$ rpmlint ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

cello.src: W: invalid-url URL: https://www.example.com/cello HTTP Error 404:

Not Found

cello.src: W: invalid-url Source0:

https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not

Found

1 packages and 0 specfiles checked; 0 errors, 2 warnings.

When checking ​cello​‘s SRPM we can see very similar output from the check against the spec
file but we also see that the check against the SRPM looks for the ​URL ​ directive as well as the
Source0 ​ directive, neither can be reached but as we know is expected and these can also be
safely ignored.

$ rpmlint ~/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm

cello.x86_64: W: invalid-url URL: https://www.example.com/cello HTTP Error 404:

Not Found

cello.x86_64: W: no-documentation

cello.x86_64: W: no-manual-page-for-binary cello

1 packages and 0 specfiles checked; 0 errors, 3 warnings.

As before, the output has changed when looking at Binary RPMs as the​ ​rpmlint​ utility is going to
check for other things that should be commonly found in Binary RPMs such as documentation
and/or​ ​man pages​ as well as things like consistent use of the​ ​Filesystem Hierarchy Standard​.
As we can see, this is exactly what is being reported just as in the previous examples and we
know that there are no​ ​man pages​ or other documentation because we didn’t provide any. Also,
once again the ​HTTP Error 404: Not Found ​is present but we’re well aware as to why.

Other than our few items that we are carrying over because this is a simple example, our RPM
is passing the​ ​rpmlint​ checks and all is well!

That’s it!

Our RPMs are sanitized (or we know and understand why they aren’t) and it is now time to
either go forth and Package RPMs or travel on into the​ ​Appendix​.

 Copyright © 2019 Red Hat, Inc.

https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Man_page
https://github.com/rpm-software-management/rpmlint
https://github.com/rpm-software-management/rpmlint
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix
http://rpm-guide.readthedocs.io/en/latest/appendix.html#appendix

Signing Packages

Signing a package is a way to secure the package for an end user. Secure transport can be
achieved with the implementation of the HTTPS protocol, which can be done when the package
is downloaded just before installing. However, the packages are often downloaded in advance
and stored in local repositories before they are used. The packages are signed to make sure no
third party can alter the content of a package.

There are three ways to sign a package:

● Adding a signature to an already existing package.

● Replacing the signature on an already existing package.

● Signing a package at build-time.

Adding a Signature to a Package

In most cases packages are built without a signature. The signature is added just before the
release of the package.

In order to add another signature to the package package, use the ​--addsign ​ option. Having
more than one signature makes it possible to record the package’s path of ownership from the
package builder to the end-user.

As an example, a division of a company creates a package and signs it with the division’s key.
The company’s headquarters then checks the package’s signature and adds the corporate
signature to the package, stating that the signed package is authentic.

Copyright ©2019 Red Hat, Inc.

With two signatures, the package makes its way to a retailer. The retailer checks the signatures
and, if they check out, adds their signature as well.

The package now makes its way to a company that wishes to deploy the package. After
checking every signature on the package, they know that it is an authentic copy, unchanged
since it was first created. Depending on the deploying company’s internal controls, they may
choose to add their own signature, to reassure their employees that the package has received
their corporate approval.

The output from the ​--addsign ​ option:

$ rpm --addsign blather-7.9-1.i386.rpm

 Enter pass phrase:

Pass phrase is good.

blather-7.9-1.i386.rpm:

To check the signatures of a package with multiple signatures:

$ rpm --checksig blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: size pgp pgp md5 OK

The two pgp strings in the output of the ​rpm --checksig ​ command show that the package
has been signed twice.

RPM makes it possible to add the same signature multiple times. The ​--addsign ​ option does
not check for multiple identical signatures.

$ rpm --addsig blather-7.9-1.i386.rpm

 Enter pass phrase:

Pass phrase is good.

Blather-7.9-1.i386.rpm:

 Copyright © 2019 Red Hat, Inc.

$ rpm --addsig blather-7.9-1.i386.rpm

 Enter pass phrase:

Pass phrase is good.

blather-7.9-1.i386.rpm:

$ rpm --addsig blather-7.9-1.i386.rpm

 Enter pass phrase:

Pass phrase is good.

blather-7.9-1.i386.rpm:

$ rpm --checksig blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: size pgp pgp pgp pgp md5 OK

The output of the ​rpm --checksig ​command displays four signatures.

Replacing a Package Signature

To change the public key without having to rebuild each package, use the --resign option.

$ rpm --resign blather-7.9-1.i386.rpm

 Enter pass phrase:

Pass phrase is good.

blather-7.9-1.i386.rpm:

To use the ​--resign ​ option on multiple package files:

$ rpm --resign b*.rpm

 Enter pass phrase:

Pass phrase is good.

blather-7.9-1.i386.rpm:

bother-3.5-1.i386.rpm:

Copyright ©2019 Red Hat, Inc.

Build-time Signing

To sign a package at build-time, use the rpmbuild command with the --sign option. This requires
entering the PGP passphrase.

For example:

$ rpmbuild -ba --sign blather-7.9.spec

 Enter pass phrase:

Pass phrase is good.

* Package: blather

…

Binary Packaging: blather-7.9-1

Finding dependencies…

…

Generating signature: 1002

Wrote: /usr/src/redhat/RPMS/i386/blather-7.9-1.i386.rpm

…

Source Packaging: blather-7.9-1

…

Generating signature: 1002

Wrote: /usr/src/redhat/SRPMS/blather-7.9-1.src.rpm

The "Generating signature" message appears in both the binary and source packaging sections.
The number following the message indicates that the signature added was created using PGP.

NOTE

When using the​ --sign ​ option for rpmbuild, use only ​-bb ​ or ​-ba ​options for package
building. ​-ba ​option mean build binary and source packages.

 Copyright © 2019 Red Hat, Inc.

To verify the signature of a package, use the rpm command with ​--checksig ​option. For
example:

$ rpm --checksig blather-7.9-1.i386.rpm

blather-7.9-1.i386.rpm: size pgp md5 OK

Building Multiple Packages

When building multiple packages, use the following syntax to avoid entering the PGP
passphrase multiple times. For example when building the blather and bother packages, sign
them by using the following:

$ rpmbuild -ba --sign b*.spec

 Enter pass phrase:

Pass phrase is good.

* Package: blather

…

Binary Packaging: blather-7.9-1

…

Generating signature: 1002

Wrote: /usr/src/redhat/RPMS/i386/blather-7.9-1.i386.rpm

…

Source Packaging: blather-7.9-1

…

Generating signature: 1002

Wrote: /usr/src/redhat/SRPMS/blather-7.9-1.src.rpm

…

* Package: bother

…

Binary Packaging: bother-3.5-1

…

Generating signature: 1002

Wrote: /usr/src/redhat/RPMS/i386/bother-3.5-1.i386.rpm

…

Source Packaging: bother-3.5-1

…

Copyright ©2019 Red Hat, Inc.

Generating signature: 1002

Wrote: /usr/src/redhat/SRPMS/bother-3.5-1.src.rpm

 Copyright © 2019 Red Hat, Inc.

Creating a PGP Key and Signing the Example RPMs

In this section we will go through the steps in order to create PGP keys with GNU Privacy Guard
(GPG). First we need to create a PGP key, use the following steps to do so.

Create a PGP Key

$ gpg --gen-key

gpg (GnuPG) 2.0.22; Copyright (C) 2013 Free Software Foundation, Inc.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

gpg: directory `/home/admiller/.gnupg' created

gpg: new configuration file `/home/admiller/.gnupg/gpg.conf' created

gpg: WARNING: options in `/home/admiller/.gnupg/gpg.conf' are not yet

active during this run

gpg: keyring `/home/admiller/.gnupg/secring.gpg' created

gpg: keyring `/home/admiller/.gnupg/pubring.gpg' created

Please select what kind of key you want:

 (1) RSA and RSA (default)

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

Your selection? 1

RSA keys may be between 1024 and 4096 bits long.

What keysize do you want? (2048)

Requested keysize is 2048 bits

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0)

Key does not expire at all

Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Copyright ©2019 Red Hat, Inc.

Real name: Testing User

Email address: testing@example.com

Comment: Testing RPM Signing Cert

You selected this USER-ID:

 "Testing User (Testing RPM Signing Cert) <testing@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O

You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to

perform

some other action (type on the keyboard, move the mouse, utilize the

disks) during the prime generation; this gives the random number

generator a better chance to gain enough entropy.

We need to generate a lot of random bytes. It is a good idea to

perform

some other action (type on the keyboard, move the mouse, utilize the

disks) during the prime generation; this gives the random number

generator a better chance to gain enough entropy.

gpg: /home/admiller/.gnupg/trustdb.gpg: trustdb created

gpg: key AABEF03C marked as ultimately trusted

public and secret key created and signed.

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u

pub 2048R/AABEF03C 2019-07-11

 Key fingerprint = 7C0B 4EB4 3741 948C 3F80 8104 11C6 02C2 AABE

F03C

uid Testing User (Testing RPM Signing Cert)

<testing@example.com>

sub 2048R/13DB9F26 2019-07-11

 Copyright © 2019 Red Hat, Inc.

Verify the GPG Key

$ gpg --list-keys

/home/admiller/.gnupg/pubring.gpg

pub 2048R/AABEF03C 2019-07-11

uid Testing User (Testing RPM Signing Cert)

<testing@example.com>

sub 2048R/13DB9F26 2019-07-11

Export the public key from keyring

$ gpg --export -a 'Testing User' > RPM-GPG-KEY-testing

$ ls -l RPM-GPG-KEY-testing

-rw-rw-r--. 1 admiller admiller 1760 Jul 11 18:50 RPM-GPG-KEY-testing

Import public key into rpmdb (AS ROOT)

rpm --import RPM-GPG-KEY-faleman

Verify the gpg pubkeys

rpm -q gpg-pubkey --qf '%{name}-%{version}-%{release}: %{summary}\n'

Configure ~/.rpmmacros file for signing

The following RPM Macros are required for signing.

Macro Definition

%_signature Signature type (it’s always ​gpg ​)

%_gpg_path Full path to gnupg directory

%_gpg_name Name to use when signing, typically an
organization/department.

%_gpgbin Path to gpg executable

Copyright ©2019 Red Hat, Inc.

$ cat >> ~/.rpmmacros <<EOF

%_signature gpg

%_gpg_path /home/student/.gnupg

%_gpg_name Testing User

%_gpgbin /usr/bin/gpg

EOF

Sign the rpms

You can sign RPMs files individually:

$ rpm --addsign ~/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm

Enter pass phrase:

Pass phrase is good.

cello-1.0-1.el7.x86_64.rpm:

Optionally you can sign multiple RPMs files at the same time with a shell glob:

$ rpm --addsign ~/rpmbuild/RPMS/*/*.rpm

Verify Signed RPMs

$ rpm --checksig ~/rpmbuild/RPMS/x86_64/cello-1.0-1.el7.x86_64.rpm

cello-1.0-1.el7.x86_64.rpm: rsa sha1 (md5) pgp md5 OK

Notes

As mentioned in the previous section, you can sign packages at build time but this is often not
the case in practice. It is common practice that packages be developed, built, iterated on,
tested, and signed once verified and ready for distribution.

 Copyright © 2019 Red Hat, Inc.

Appendix
Here you will find supplementary information that is very good to know and will likely prove to be
helpful for anyone who is going to be building RPMs in any serious capacity but isn’t necessarily
a hard requirement to learn how to package RPMs,which is what the main goal of this document
is.

Mock
“​Mock​ is a tool for building packages. It can build packages for different architectures
and different Fedora or RHEL versions than the build host has. Mock creates chroots
and builds packages in them. Its only task is to reliably populate a chroot and attempt to
build a package in that chroot.
Mock also offers a multi-package tool, mockchain, that can build chains of packages that
depend on each other.

Mock is capable of building SRPMs from source configuration management if the
mock-scm package is present, then building the SRPM into RPMs. See –scm-enable in
the documentation.” (From the upstream documentation)

Note: ​In order to use​ ​Mock​ on a RHEL system, you will need to enable the “Extra Packages for
Enterprise Linux” (​EPEL​) repository. This is a repository provided by the​ ​Fedora​ community and
has many useful tools for RPM Packagers, systems administrators, and developers.

One of the most common use cases RPM Packagers have for​ ​Mock​ is to create what is known
as a “pristine build environment”. By using mock as a “pristine build environment”, nothing about
the current state of your system has an effect on the RPM Package itself. Mock uses different
configurations to specify what the build “target” is, these are found on your system in the
/etc/mock/ ​directory (once you’ve installed the ​mock ​ package). You can build for different
distributions or releases just by specifying it on the command line. Something to keep in mind is
that the configuration files the come with mock are targeted at Fedoran RPM Packagers and as
such RHEL release versions are labeled as “​epel ​” because that is the “target” repository these
RPMs would be built for. You simply specify the configuration you want to use (minus the ​.cfg
file extension). For example, you could build our ​cello ​ example for both RHEL 7 and Fedora
23 using the following commands without ever having to use different machines.

$ mock -r epel-7-x86_64 ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

$ mock -r fedora-23-x86_64 ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Copyright ©2019 Red Hat, Inc.

https://fedoraproject.org/wiki/Mock
https://fedoraproject.org/wiki/Mock
https://fedoraproject.org/wiki/Mock
https://fedoraproject.org/wiki/EPEL
https://getfedora.org/
https://getfedora.org/
https://fedoraproject.org/wiki/Mock
https://fedoraproject.org/wiki/Mock

One example of why you might want to use mock is if you were packaging RPMs on your laptop
and you had a package installed (we’ll call it ​foo ​ for this example) that was a ​BuildRequires
of that package you were creating but forgot to actually make the ​BuildRequires: foo
entry. The build would succeed when you run ​rpmbuild ​ because ​foo ​ was needed to build and
it was found on the system at build time. However, if you took the SRPM to another system that
lacked foo it would fail, causing an unexpected side effect.​ ​Mock​ solves this by first parsing the
contents of the SRPM and installing the ​BuildRequires ​ into it’s​ ​chroot​ which means that if
you were missing the ​BuildRequires ​ entry the build would fail because mock would not know
to install it and it would therefore not be present in the buildroot.

Another example is the opposite scenario, let’s say you need ​gcc ​ to build a package but don’t
have it installed on your system (which is unlikely as an RPM Packager, but just for the sake of
the example let us pretend that is true). With​ ​Mock​, you don’t have to install ​gcc ​ on your system
because it will get installed in the chroot as part of mock’s process.

Below is an example of attempting to rebuild a package that has a dependency that I’m missing
on my system. The key thing to note is that while ​gcc ​ is commonly on most RPM Packager’s
systems, some RPM Packages can have over a dozen ​BuildRequires ​ and this allows you to
not need to clutter up your workstation with otherwise unneeded or unnecessary packages.

Note: ​Some of the output below has been omitted for brevity and has been marked by an
ellipsis (​... ​).

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

Installing /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

error: Failed build dependencies: gcc is needed by cello-1.0-1.el7.x86_64

$ mock -r epel-7-x86_64 ~/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm

INFO: mock.py version 1.2.17 starting (python version = 2.7.5)...

Start: init plugins

INFO: selinux enabled

Finish: init plugins

Start: run

INFO: Start(/home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm)

...

Wrote: /builddir/build/RPMS/cello-1.0-1.el7.centos.x86_64.rpm

warning: Could not canonicalize hostname: rhel7

Wrote: /builddir/build/RPMS/cello-debuginfo-1.0-1.el7.centos.x86_64.rpm

Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.JuPOtY

+ umask 022

+ cd /builddir/build/BUILD

+ cd cello-1.0

+ /usr/bin/rm -rf /builddir/build/BUILDROOT/cello-1.0-1.el7.centos.x86_64

+ exit 0

 Copyright © 2019 Red Hat, Inc.

https://fedoraproject.org/wiki/Mock
https://fedoraproject.org/wiki/Mock
https://en.wikipedia.org/wiki/Chroot
https://en.wikipedia.org/wiki/Chroot
https://fedoraproject.org/wiki/Mock
https://fedoraproject.org/wiki/Mock

Finish: rpmbuild cello-1.0-1.el7.src.rpm

Finish: build phase for cello-1.0-1.el7.src.rpm

INFO: Done(/home/admiller/rpmbuild/SRPMS/cello-1.0-1.el7.src.rpm)

Config(epel-7-x86_64) 0 minutes 16 seconds

INFO: Results and/or logs in: /var/lib/mock/epel-7-x86_64/result

Finish: run

As you can see, mock is a fairly verbose tool. You will also notice a lot of​ ​yum​ or​ ​dnf​ output
(depending on RHEL7 or Fedora mock target) that is not found in this output which was omitted
for brevity and is often omitted after you have done an ​--init ​ on a mock target, such as ​mock
-r epel-7-x86_64 --init ​ which will pre-download all the required packages, cache them,
and pre-stage the build chroot.

For more information, please consult the​ ​Mock​ upstream documentation.

Version Control Systems
When working with RPMs, it is often desirable to utilize a​ ​Version Control System​ (VCS) such as
git​ for managing components of the software we are packaging. Something to note is that
storing binary files in a VCS is not favorable because it will drastically inflate the size of the
source repository as these tools are engineered to handle differentials in files (often optimized
for text files) and this is not something that binary files lend themselves to so normally each
whole binary file is stored. As a side effect of this there are some clever utilities that are popular
among upstream Open Source projects that work around this problem by either storing the
SPEC file where the source code is in a VCS (i.e. - it is not in a compressed archive for
redistribution) or place only the SPEC file and patches in the VCS and upload the compressed
archive of the upstream release source to what is called a “look aside cache”.

In this section we will cover two different options for using a VCS system,​ ​git​, for managing the
contents that will ultimately be turned into an RPM package. One is called​ ​tito​ and the other is
dist-git​.

Note: ​For the duration of this section you will need to install the git package on you system in
order to follow along.

tito
Tito is a utility that assumes all the source code for the software that is going to be packaged is
already in a​ ​git​ source control repository. This is good for those practicing a DevOps workflow
as it allows for the team writing the software to maintain their normal​ ​Branching Workflow​. Tito
will then allow for the software to be incrementally packaged, built in an automated fashion, and
still provide a native installation experience for​ ​RPM​ based systems.

Copyright ©2019 Red Hat, Inc.

http://yum.baseurl.org/
http://yum.baseurl.org/
https://github.com/rpm-software-management/dnf
https://github.com/rpm-software-management/dnf
https://fedoraproject.org/wiki/Mock
https://fedoraproject.org/wiki/Mock
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://github.com/dgoodwin/tito
https://github.com/dgoodwin/tito
https://github.com/release-engineering/dist-git
https://github.com/release-engineering/dist-git
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
http://rpm.org/
http://rpm.org/

Note: ​The​ ​tito​ package is available in​ ​Fedora​ as well as in the​ ​EPEL​ repository for use on RHEL
7.

Tito operates based on​ ​git tags​ and will manage tags for you if you elect to allow it, but can
optionally operate under whatever tagging scheme you prefer as this functionality is
configurable.

Let’s explore a little bit about tito by looking at an upstream project already using it. We will
actually be using the upstream git repository of the project that is our next section’s subject,
dist-git​. Since this project is publicly hosted on​ ​GitHub​, let’s go ahead and clone the git repo.

$ git clone https://github.com/release-engineering/dist-git.git

Cloning into 'dist-git'...

remote: Counting objects: 425, done.

remote: Total 425 (delta 0), reused 0 (delta 0), pack-reused 425

Receiving objects: 100% (425/425), 268.76 KiB | 0 bytes/s, done.

Resolving deltas: 100% (184/184), done.

Checking connectivity... done.

$ cd dist-git/

$ ls *.spec

dist-git.spec

$ tree rel-eng/

rel-eng/

├── packages

│ └── dist-git

└── tito.props

1 directory, 2 files

As we can see here, the SPEC file is at the root of the git repository and there is a ​rel-eng
directory in the repository which is used by ​tito ​ for general bookkeeping, configuration, and
various advanced topics like custom tito modules. We can see in the directory layout that there
is a sub-directory entitled ​packages ​ which will store a file per package that tito manages in the
repository as you can have many RPMs in a single git repository and tito will handle that just
fine. In this scenario however, we see only a single package listing and it should be noted that it
matches the name of our SPEC file. All of this is setup by the command ​tito init ​when the
developers of​ ​dist-git​ first initialized their git repo to be managed by tito.

If we were to follow a common workflow of a DevOps Practitioner then we would likely want to
use this as part of a​ ​Continuous Integration​ (CI) or​ ​Continuous Delivery​ (CD) process. What we

 Copyright © 2019 Red Hat, Inc.

https://github.com/dgoodwin/tito
https://github.com/dgoodwin/tito
https://getfedora.org/
https://getfedora.org/
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://github.com/release-engineering/dist-git
https://github.com/release-engineering/dist-git
https://github.com/
https://github.com/
https://github.com/release-engineering/dist-git
https://github.com/release-engineering/dist-git
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_delivery

can do in that scenario is perform what is known as a “test build” to tito, we can even use mock
to do this. We could then use the output as the installation point for some other component in
the pipeline. Below is a simple example of commands that could accomplish this and they could
be adapted to other environments.

$ tito build --test --srpm

Building package [dist-git-0.13-1]

Wrote: /tmp/tito/dist-git-git-0.efa5ab8.tar.gz

Wrote: /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.fc23.src.rpm

$ tito build --builder=mock --arg mock=epel-7-x86_64 --test --rpm

Building package [dist-git-0.13-1]

Creating rpms for dist-git-git-0.efa5ab8 in mock: epel-7-x86_64

Wrote: /tmp/tito/dist-git-git-0.efa5ab8.tar.gz

Wrote: /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.fc23.src.rpm

Using srpm: /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.fc23.src.rpm

Initializing mock...

Installing deps in mock...

Building RPMs in mock...

Wrote:

 /tmp/tito/dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm

 /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm

$ sudo yum localinstall /tmp/tito/dist-git-*.noarch.rpm

Loaded plugins: product-id, search-disabled-repos, subscription-manager

Examining /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm:

dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch

Marking /tmp/tito/dist-git-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm to be

installed

Examining

/tmp/tito/dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm:

dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch

Marking /tmp/tito/dist-git-selinux-0.13-1.git.0.efa5ab8.el7.centos.noarch.rpm

to be installed

Resolving Dependencies

--> Running transaction check

---> Package dist-git.noarch 0:0.13-1.git.0.efa5ab8.el7.centos will be

installed

Note that the final command would need to be run with either sudo or root permissions and that
much of the output has been omitted for brevity as the dependency list is quite long.

Copyright ©2019 Red Hat, Inc.

This concludes our simple example of how to use tito but it has many amazing features for
traditional Systems Administrators, RPM Packagers, and DevOps Practitioners alike. I would
highly recommend consulting the upstream documentation found at the tito GitHub site for more
information on how to quickly get started using it for your project as well as various advanced
features it offers.

dist-git
The​ ​dist-git​ utility takes a slightly different approach from that of​ ​tito​ such that instead of keeping
the raw source code in​ ​git​ it instead will keep SPEC files and patches in a git repository and
upload the compressed archive of the source code to what is known as a “look-aside cache”.
The “look-aside-cache” is a term that was coined by the use of RPM Build Systems storing large
files like these “on the side”. A system like this is generally tied to a proper RPM Build System
such as​ ​Koji​. The build system is then configured to pull the items that are listed as ​SourceX
entries in the SPEC files in from this look-aside-cache, while the SPEC and patches remain in a
version control system. There is also a helper command line tool to assist in this.
In an effort to not duplicate documentation, for more information on how to setup a system such
as this please refer to the upstream​ ​dist-git​ docs. upstream docs.

More on Macros
There are many built-in RPM Macros and we will cover a few in the following section, however
an exhaustive list can be found rpm.org’s​ ​rpm macro​ official documentation.
There are also macros that are provided by your​ ​Linux​ Distribution, we will cover some of those
provided by​ ​Fedora​ and​ ​RHEL​ in this section as well as provide information on how to inspect
your system to learn about others that we don’t cover or for discovering them on other
RPM-based​ ​Linux​ Distributions.

Defining Your Own
You can define your own Macros, below is an excerpt from the​ ​RPM Official Documentation​ and
I recommend anyone interested in an exhaustive explanation of the many possibilities of
defining their own macros to visit that resource. It’s really quite good and there’s little reason to
duplicate the bulk of that content here.

To define a macro use:

%define <name>[(opts)] <body>

All whitespace surrounding ​\<body\> ​is removed. Name may be composed of alphanumeric
characters, and the character ​_ ​ and must be at least 3 characters in length. A macro without an
(opts) field is “simple” in that only recursive macro expansion is performed. A parameterized

 Copyright © 2019 Red Hat, Inc.

https://github.com/release-engineering/dist-git
https://github.com/release-engineering/dist-git
https://github.com/dgoodwin/tito
https://github.com/dgoodwin/tito
https://git-scm.com/
https://git-scm.com/
https://fedorahosted.org/koji/
https://fedorahosted.org/koji/
https://github.com/release-engineering/dist-git
https://github.com/release-engineering/dist-git
http://rpm.org/wiki/PackagerDocs/Macros
http://rpm.org/wiki/PackagerDocs/Macros
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://getfedora.org/
https://getfedora.org/
https://www.redhat.com/en/technologies/linux-platforms
https://www.redhat.com/en/technologies/linux-platforms
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
http://rpm.org/wiki/Docs
http://rpm.org/wiki/Docs

macro contains an (opts) field. The opts (i.e. string between parentheses) is passed exactly as
is to getopt(3) for argc/argv processing at the beginning of a macro invocation.

%files
Common “advanced” RPM Macros needed in the %files section are as follows:

Macro Definition

%license This identifies the file listed as a LICENSE file and it will be installed
and labeled as such by RPM. Example: ​%license LICENSE

%dir Identifies that the path is a directory that should be owned by this
RPM. This is important so that the rpm file manifest accurately
knows what directories to clean up on uninstall. Example: ​%dir
%{_libdir}/%{name}

%config(noreplace) Specifies that the following file is a configuration file and therefore
should not be overwritten (or replaced) on a package install or
update if the file has been modified from the original installation
checksum. In the event that there is a change, the file will be
created with ​.rpmnew ​ appended to the end of the filename upon
upgrade or install so that the pre-existing or modified file on the
target system is not modified. Example: ​%config(noreplace)
%{_sysconfdir}/%{name}/%{name}.conf

Built In Macros
Your system has many built in RPM Macros and the fastest way to view them all is to simply run
the ​rpm --showrc ​ command, however note that this will contain a ​lot​ of output so it’s often
used in combination with a pipe to grep (or a clever shell Process Substitution).

You can also find information about the RPMs macros that come directly with your system’s
version of RPM by looking at the output of the command ​rpm -ql rpm ​ taking note of the files
titled ​macros ​ in the directory structure.

RPM Distribution Macros
Different distributions will supply different sets of recommended RPM Macros based on the
language implementation of the software being packaged or the specific Guidelines of the
distribution in question.

Copyright ©2019 Red Hat, Inc.

These are often provided as RPM Packages themselves and can be installed with the
distribution package manager, such as​ ​yum​ or​ ​dnf​. The macro files themselves once installed
can be found in ​/usr/lib/rpm/macros.d/ ​ and will be included in the ​rpm --showrc
output by default once installed.

One primary example of this is the​ ​Fedora Packaging Guidelines​ section pertaining specifically
to​ ​Programming Language Specific Guidelines, which at the time of this writing has over 30
different sets of guidelines along with associated RPM Macro sets for subject matter specific
RPM Packaging.

One example of these kinds of RPMs would be for​ ​Python​ version 2.x and if we have the
python2-rpm-macros ​ package installed (available in EPEL for RHEL 7), we have a number
of ​python2 ​ specific macros available to us.

$ rpm -ql python2-rpm-macros

/usr/lib/rpm/macros.d/macros.python2

$ rpm --showrc | grep python2

-14: __python2 /usr/bin/python2

CFLAGS="%{optflags}" %{__python2} %{py_setup} %{?py_setup_args} build

--executable="%{__python2} %{py2_shbang_opts}" %{?1}

CFLAGS="%{optflags}" %{__python2} %{py_setup} %{?py_setup_args} install -O1

--skip-build --root %{buildroot} %{?1}

-14: python2_sitearch %(%{__python2} -c "from distutils.sysconfig import

get_python_lib; print(get_python_lib(1))")

-14: python2_sitelib %(%{__python2} -c "from distutils.sysconfig import

get_python_lib; print(get_python_lib())")

-14: python2_version %(%{__python2} -c "import sys;

sys.stdout.write('{0.major}.{0.minor}'.format(sys.version_info))")

-14: python2_version_nodots %(%{__python2} -c "import sys;

sys.stdout.write('{0.major}{0.minor}'.format(sys.version_info))")

The above output displays the raw RPM Macro definitions, but we are likely more interested in
what these will evaluate to which we can do with ​rpm --eval ​in order to determine what they
do as well as how they may be helpful to us when packaging RPMs.

$ rpm --eval %{__python2}

/usr/bin/python2

$ rpm --eval %{python2_sitearch}

/usr/lib64/python2.7/site-packages

$ rpm --eval %{python2_sitelib}

/usr/lib/python2.7/site-packages

 Copyright © 2019 Red Hat, Inc.

http://yum.baseurl.org/
http://yum.baseurl.org/
https://github.com/rpm-software-management/dnf
https://github.com/rpm-software-management/dnf
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://www.python.org/
https://www.python.org/

$ rpm --eval %{python2_version}

2.7

$ rpm --eval %{python2_version_nodots}

27

Java Specific Macros

As mentioned previously, but with recap again in this section. Different distributions will supply
different sets of recommended RPM Macros based on the language implementation of the
software being packaged or the specific Guidelines of the distribution in question.

These are often provided as RPM Packages themselves and can be installed with the
distribution package manager, such as​ ​yum​ or​ ​dnf​. The macro files themselves once installed
can be found in ​/usr/lib/rpm/macros.d/ ​ and will be included in the ​rpm --showrc
output by default once installed.

One primary example of this is the​ ​Fedora Packaging Guidelines​ section pertaining specifically
to​ ​Programming Language Specific Guidelines, which at the time of this writing has over 30
different sets of guidelines along with associated RPM Macro sets for subject matter specific
RPM Packaging.

One example of these kinds of RPMs would be for​ ​Python​ version 2.x and if we have the
python2-rpm-macros ​ package installed (available in EPEL for RHEL 7), we have a number
of ​python2 ​ specific macros available to us.

$ rpm -ql javapackages-tools | grep macros

/etc/rpm/macros.fjava

/etc/rpm/macros.jpackage

$ rpm --showrc | grep java

 %{?_javaclasspath:CLASSPATH="%{_javaclasspath}"

-14: __docdir_path

%{_datadir}/doc:%{_datadir}/man:%{_datadir}/info:%{_datadir}/gtk-doc/html:%{?_d

ocdir}:%{?_mandir}:%{?_infodir}:%{?_javadocdir}:/usr/doc:/usr/man:/usr/info:/us

r/X11R6/man

-14: __javadoc_path ^%{_javadocdir}/.*

-14: __javadoc_requires %{_rpmconfigdir}/javadoc.req

 %{!?__jar_repack:/usr/lib/rpm/redhat/brp-java-repack-jars}

-14: __pom_call . /usr/share/java-utils/pom_editor.sh; pom_

-14: _javaconfdir %{_sysconfdir}/java

Copyright ©2019 Red Hat, Inc.

http://yum.baseurl.org/
http://yum.baseurl.org/
https://github.com/rpm-software-management/dnf
https://github.com/rpm-software-management/dnf
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://www.python.org/
https://www.python.org/

-14: _javadir %{_datadir}/java

-14: _javadocdir %{_datadir}/javadoc

-14: _jnidir %{_prefix}/lib/java

-14: add_jvm_extension JAVA_LIBDIR=%{buildroot}%{_javadir} %{_bindir}/jvmjar

-l

for _dir in %{_jnidir} %{_javajnidir} %{_javadir}; do

python -m /usr/share/java-utils/maven_depmap %{-a} %{-v*:-r %{-v*}} \

-14: ant JAVA_HOME=%{java_home} ant

-14: jar %{java_home}/bin/jar

-14: java %(. %{_javadir}-utils/java-functions; set_javacmd; echo

$JAVACMD)

-14: java_home %(. %{_javadir}-utils/java-functions; set_jvm; echo $JAVA_HOME)

-14: javac %{java_home}/bin/javac

-14: javadoc %{java_home}/bin/javadoc

. %{_javadir}-utils/java-functions

if [-f %{_sysconfdir}/java/%{name}.conf] ; then

 . %{_sysconfdir}/java/%{name}.conf

The above output displays the raw RPM Macro definitions, but we are likely more interested in
what these will evaluate to which we can do with ​rpm --eval ​in order to determine what they
do as well as how they may be helpful to us when packaging RPMs.

$ rpm --eval %{__python2}

/usr/bin/python2

$ rpm --eval %{python2_sitearch}

/usr/lib64/python2.7/site-packages

$ rpm --eval %java

/opt/ibm/java-x86_64-80/bin/java

$ rpm --eval %javac

/opt/ibm/java-x86_64-80/bin/javac

As you can see above, the example system this command on is running a non-standard Java
SDK for a Red Hat Enterprise Linux install. This was done in order to show the advantages of
using the macros instead of trying to hardcode to specific binaries or paths because as a
packager this can impose added work as you build your SPRM on different versions of Java or
on different releases of an operating system. By using the macros we are able to use or rebuild
the same SPEC or SRPM to target different versions without any extra maintenance burden on
use as the packager.

 Copyright © 2019 Red Hat, Inc.

Advanced SPEC File Topics
There are various topics in the world of RPM SPEC Files that are considered advanced
because they have implications on not only the SPEC file, how the package is built, but also on
the end machine that the resulting RPM is installed upon. In this section we will cover the most
common of these such as Epoch, Scriptlets, and Triggers.

Epoch
First on the list is ​Epoch ​, epoch is a way to define weighted dependencies based on version
numbers. It’s default value is 0 and this is assumed if an ​Epoch ​ directive is not listed in the
RPM SPEC file. This was not covered in the SPEC File section of this guide because it is almost
always a bad idea to introduce an Epoch value as it will skew what you would normally
otherwise expect RPM to do when comparing versions of packages.

For example if a package ​foobar ​ with ​Epoch: 1 ​ and ​Version: 1.0 ​ was installed and
someone else packaged ​foobar ​ with ​Version: 2.0 ​ but simply omitted the ​Epoch ​ directive
either because they were unaware of it’s necessity or simply forgot, that new version would
never be considered an update because the Epoch version would win out over the traditional
Name-Version-Release ​ marker that signifies versioning for RPM Packages.

This approach is generally only used when absolutely necessary (as a last resort) to resolve an
upgrade ordering issue which can come up as a side effect of upstream software changing
versioning number schemes or versions incorporating alphabetical characters that can not
always be compared reliably based on encoding.

Triggers and Scriptlets
In RPM Packages, there are a series of directives that can be used to inflict necessary or
desired change on a system during install time of the RPM. These are called ​scriptlets​.

One primary example of when and why you’d want to do this is when a system service RPM is
installed and it provides a​ ​systemd​ ​unit file​. At install time we will need to notify​ ​systemd​ that
there is a new unit so that the system administrator can run a command similar to ​systemctl
start foo.service ​ after the fictional RPM ​foo ​ (which provides some service daemon in
this example) has been installed. Similarly, we would need to inverse of this action upon
uninstallation so that an administrator would not get errors due to the daemon’s binary no longer
being installed but the unit file still existing in systemd’s running configuration.

There are a small handful of common scriptlet directives, they are similar to the “section
headers” like ​%build ​ or ​%install ​in that they are defined by multi-line segments of code,
often written as standard​ ​POSIX​ shell script but can be a few different programming languages

Copyright ©2019 Red Hat, Inc.

https://freedesktop.org/wiki/Software/systemd/
https://freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://freedesktop.org/wiki/Software/systemd/
https://freedesktop.org/wiki/Software/systemd/
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX

such that RPM for the target machine’s distribution is configured to allow them. An exhaustive
list of these available languages can be found in the RPM Official Documentation.

Scriptlet directives are as follows:

Directive Definition

%pre Scriptlet that is executed just before the package is installed on the
target system.

%post Scriptlet that is executed just after the package is installed on the
target system.

%preun Scriptlet that is executed just before the package is uninstalled from
the target system.

%postun Scriptlet that is executed just after the package is uninstalled from
the target system.

Is is also common for RPM Macros to exist for this function. In our previous example we
discussed​ ​systemd​ needing to be notified about a new​ ​unit file​, this is easily handled by the
systemd scriptlet macros as we can see from the below example output. More information on
this can be found in the​ ​Fedora systemd Packaging Guidelines​.

$ rpm --showrc | grep systemd

-14: __transaction_systemd_inhibit %{__plugindir}/systemd_inhibit.so

-14: _journalcatalogdir /usr/lib/systemd/catalog

-14: _presetdir /usr/lib/systemd/system-preset

-14: _unitdir /usr/lib/systemd/system

-14: _userunitdir /usr/lib/systemd/user

/usr/lib/systemd/systemd-binfmt %{?*} >/dev/null 2>&1 || :

/usr/lib/systemd/systemd-sysctl %{?*} >/dev/null 2>&1 || :

-14: systemd_post

-14: systemd_postun

-14: systemd_postun_with_restart

-14: systemd_preun

-14: systemd_requires

Requires(post): systemd

Requires(preun): systemd

Requires(postun): systemd

-14: systemd_user_post %systemd_post --user --global %{?*}

-14: systemd_user_postun %{nil}

-14: systemd_user_postun_with_restart %{nil}

-14: systemd_user_preun

systemd-sysusers %{?*} >/dev/null 2>&1 || :

echo %{?*} | systemd-sysusers - >/dev/null 2>&1 || :

 Copyright © 2019 Red Hat, Inc.

https://freedesktop.org/wiki/Software/systemd/
https://freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://fedoraproject.org/wiki/Packaging:Systemd
https://fedoraproject.org/wiki/Packaging:Systemd

systemd-tmpfiles --create %{?*} >/dev/null 2>&1 || :

$ rpm --eval %{systemd_post}

if [$1 -eq 1] ; then

 # Initial installation

 systemctl preset >/dev/null 2>&1 || :

fi

$ rpm --eval %{systemd_postun}

systemctl daemon-reload >/dev/null 2>&1 || :

$ rpm --eval %{systemd_preun}

if [$1 -eq 0] ; then

 # Package removal, not upgrade

 systemctl --no-reload disable > /dev/null 2>&1 || :

 systemctl stop > /dev/null 2>&1 || :

fi

Another item that provides even more fine grained control over the RPM Transaction as a whole
is what is known as ​triggers​. These are effectively the same thing as a scriptlet but are
executed in a very specific order of operations during the RPM install or upgrade transaction
allowing for a more fine grained control over the entire process.

The order in which each is executed and the details of which are provided below.

all-%pretrans

...

any-%triggerprein (%triggerprein from other packages set off by new install)

new-%triggerprein

new-%pre for new version of package being installed

... (all new files are installed)

new-%post for new version of package being installed

any-%triggerin (%triggerin from other packages set off by new install)

new-%triggerin

old-%triggerun

any-%triggerun (%triggerun from other packages set off by old uninstall)

old-%preun for old version of package being removed

... (all old files are removed)

old-%postun for old version of package being removed

old-%triggerpostun

Copyright ©2019 Red Hat, Inc.

any-%triggerpostun (%triggerpostun from other packages set off by old un

 install)

...

all-%posttrans

The above items are from the included ​rpm ​ documentation found in
/usr/share/doc/rpm-4.*/triggers

AppStreams and Modularity: The Future of Packaging

A common challenge of Enterprises is the desire to maintain stability at the operating system
platform level, but also cater to differing lifecycle cadences of software and their dependencies.
There have been many different attempts at solving this problem but from the lessons learned
over time from various solutions in that past, the new concept of AppStreams and Modularity
was born. Effectively this new technology allows many different packages (or sets of packages
so the dependency chain can operate with the desired software as a single unit) can provide the
same thing but be different versions and lifecycle managed independently. Below is an excerpt
from the ​Fedora Modularity Documentation​:

Modularity
Modularity enables you to choose a particular stream (major version) of content that has been
natively built and tested for your system, and to receive the right updates for it.

Without Modularity

 Copyright © 2019 Red Hat, Inc.

https://docs.fedoraproject.org/en-US/modularity/

With modularity

That means you’re no longer limited to a single version of each package for a given Fedora
release. And because many streams are now available in multiple Fedora releases, you can
install a specific version of software regardless of what Fedora release you’re running.

Examples
Scenario 1​: Some users install packages coming from a different Fedora release in order to
consume a specific version of a database that is compatible with their application. But thanks to
Modularity they might not need to do that anymore, because multiple versions of the database
can available in each Fedora release. All they need to do is to consume the specific stream of
that database right from the Fedora repositories for their system.

Scenaro 2​: There were cases when users couldn’t upgrade their system to a new Fedora
release because their application wouldn’t function with the new version of a language runtime
coming with the upgrade. Modularity can fix this problem by providing the same language
versions in both Fedora releases. With that, the user can consume a specific stream of the
language and keep it even when they upgrade their system. And when the application is ready
for the new language version, it can be upgraded later, independently from the OS, by switching
to a different stream.

Copyright ©2019 Red Hat, Inc.

Compatibility
Modularity is built to be 100% compatible with existing expectations and workflows. The
installation and update experience continues to work the same way — even when there are
multiple versions of packages — thanks to default streams.

For example, the following two commands work the same way on systems with and without
Modularity:

$ dnf install httpd

$ dnf update

On systems with multiple httpd streams available, the default stream is automatically enabled
and consumed.

Building AppStream Modules

At the time of this writing, the only publicly available way to build AppStream Modules is through
the ​upstream Fedora Project tooling​ which should not be considered production ready.

References
Below are references to various topics of interest around RPMs, RPM Packaging, and RPM
Building. Some of these will be advanced and extend far beyond the introductory material
included in this guide.

● Red Hat Enterprise Linux 7 RPM Packaging Guide
● Red Hat Enterprise Linux 8 Packaging and Distributing Software
● RPM Official Documentation
● Gurulabs CREATING RPMS (Student Version)
● Fedora How To Create An RPM Package Guide
● Fedora Packaging Guidelines
● OpenSUSE Packaging Guidelines
● IBM RPM Packaging Guide:​ ​Part 1​,​ ​Part 2​,​ ​Part 3
● Maximum RPM​ (Some material is dated, but this is still a great resource for advanced

topics.)
● Fedora Modularity and AppStreams
● Fedora Java Packaging Tutorial

 Copyright © 2019 Red Hat, Inc.

https://docs.fedoraproject.org/en-US/modularity/making-modules/building-modules-locally/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/rpm_packaging_guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/packaging_and_distributing_software/index
http://rpm.org/wiki/Docs
https://www.gurulabs.com/media/files/courseware-samples/GURULABS-RPM-GUIDE-v1.0.PDF
https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages/index.html
https://fedoraproject.org/wiki/How_to_create_an_RPM_package
https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://fedoraproject.org/wiki/Packaging:Guidelines?rd=Packaging/Guidelines
https://en.opensuse.org/openSUSE:Packaging_guidelines
http://www.ibm.com/developerworks/library/l-rpm1/
http://www.ibm.com/developerworks/library/l-rpm1/
http://www.ibm.com/developerworks/library/l-rpm2/
http://www.ibm.com/developerworks/library/l-rpm2/
http://www.ibm.com/developerworks/library/l-rpm3/
http://www.ibm.com/developerworks/library/l-rpm3/
http://ftp.rpm.org/max-rpm/
https://docs.fedoraproject.org/en-US/modularity/
https://docs.fedoraproject.org/en-US/java-packaging-howto/introduction/

This Document

This Document was originally created for the Red Hat Summit 2016, but has been updated
where applicable for both Red Hat Summit 2017 and 2018. There is an upstream document
originally written by your presenter, Adam Miller, but is maintained on GitHub. Always feel free
to check that document for newer versions and/or provide feedback about improvements you
would like to see in the future.

● GitHub Project: ​https://github.com/redhat-developer/rpm-packaging-guide
● Read The Docs Pre-Rendered Guide: ​https://rpm-packaging-guide.github.io/

Copyright ©2019 Red Hat, Inc.

https://github.com/redhat-developer/rpm-packaging-guide
https://rpm-packaging-guide.github.io/

