

The Magical Future
Immutable infrastructure,

containers, & the future of
microservices

Adam Miller
PRESENTED BY:

Senior Software Engineer, Red Hat, Fedora Engineering

CC BY-SA 2.0

Today's Topics

· Define “containers” in the context of Linux systems

· Container Implementations in Linux

· Define “microservices”

· What Immutable Infrastructure is

· Example of what Immutable Infrastructure deployment workflow looks like

· Fedora Cloud Atomic Host

· How Fedora Atomic enables and enhances these concepts

· Kubernetes

· Orchestrating the Immutable Infrastructure

· OpenShift Origin

· Enabling the development and container building pipeline

· Q&A

Containers

What are containers?

· Operating-system-level Virtualization

· We (the greater Linux community) like to call them “containers”

· OK, so what is Operating-system-level Virtualization?

· The multitenant isolation of multiple user space instances or namespaces.

Traditional OS Containers

HARDWARE

HOST OS

HARDWARE
HOST OS

CONTAINER

LIBS

APP A

LIBS A LIBS B LIBS LIBS

APP A APP B
CONTAINER

LIBS

APP B

Containers are not new

· The concept of containers is not new

· chroot was the original “container”, introduced in 1982

· Unsophisticated in many ways, lacking the following:

· COW

· Quotas

· I/O rate limiting

· cpu/memory constraint

· Network Isolation

· Brief (not exhaustive) history of sophisticated UNIX-like container technology:

· 2000 - FreeBSD jails

· 2001 – Linux Vserver

· 2004 – Solaris Zones

· 2008 – LXC

· This is where things start to get interesting

The Modern Linux Container
is Born

· 2008 - IBM releases LinuX Containers (LXC)

· Userspace tools to effectively wrap a chroot in kernel namespacing and cgroups

· Provided sophisticated features the chroot lacked

· 2011 – systemd nspawn containers

· run a command or OS in a light-weight namespace container. Like chroot, but virtualizes
the file system hierarchy, process tree, various IPC subsystems, host and domain name.

· 2013 – DotCloud releases Docker (https://github.com/docker/docker)

· Originally used LXC as the backend, introduces the Docker daemon, layered images,
standard toolset for building images and a distribution method (docker registry). Later
makes backend driver pluggable and replaces LXC with libcontainer as default.

· 2014 – CoreOS releases rkt (https://github.com/coreos/rkt)

· rkt is an implementation of App Container(appc) specification and App Container
Image(ACI) specification, built on top of systemd-nspawn.

· ACI and appc aimed to be a cross-container specification to be a common ground
between container implementations.

Modern Linux Container

· 2015 – Open Container Project (http://opencontainers.org/)

· “The Open Container Initiative is a lightweight, open governance structure, to be formed
under the auspices of the Linux Foundation, for the express purpose of creating open
industry standards around container formats and runtime.” - http://opencontainers.org/

· Initiative Sponsors: Apcera, AT&T, AWS, Cisco, ClusterHQ, CoreOS, Datera, Docker, EMC,
Fujitsu, Google, Goldman Sachs, HP, Huawei, IBM, Intel, Joyent, Kismatic, Kyup, the Linux
Foundation, Mesosphere, Microsoft, Midokura, Nutanix, Oracle, Pivotal, Polyverse,
Rancher, Red Hat, Resin.io, Suse, Sysdig, Twitter, Verizon, VMWare

· 2015 – runC (http://runc.io/)

· Stand-alone command line tool for spawning containers as per the OCP specification.

· Containers are child processes of runC, no system daemon, can be embedded.

· Shares technology lineage with Docker (libcontainer and others).

· Compatible with Docker images.

Docker

· Docker Daemon is the single point of entry, has language bindings for other
clients and tooling. (Image verification)

· Containers are instances of images.

· Images are built in a standard way using Dockerfile

· Mr. SELinux (Dan Walsh) pushed SELinux support upstream to Docker.

· Pluggable backends for isolation mechanism, storage, networking, etc.

Dockerfile

FROM fedora

MAINTAINER http://fedoraproject.org/wiki/Cloud

RUN yum -y update && yum clean all

RUN yum -y install httpd && yum clean all

RUN echo "HTTPD" >> /var/www/html/index.html

EXPOSE 80

Simple startup script

ADD run-httpd.sh /run-httpd.sh

RUN chmod -v +x /run-httpd.sh

CMD ["/run-httpd.sh"]

Container Platform Images

Fedora 22 Host

HARDWARE OR VM

Fedora 22
APP

CONTAINER

Fedora 22
PLATFORM IMAGE

Fedora 22
APP

Fedora 22
APP

Fedora 23 Host

HARDWARE OR VIRTUAL MACHINE

Fedora 22
APP

Fedora 22

App
LIBS

APP

Microservices

Microservices are not entirely
new.

· The vocabulary term is “new-ish” (2012 – James Lewis and Martin Fowler)

· The idea is very old

· Microkernels have existed since the 1980s

· Could argue that system admins have been doing this with shell scripts and
pipes for years

· Applying this concept to services
higher in the stack is a newer
trend

· Heavily influenced by
popular technologies such
as web microframeworks
and containers.

What are Microservices?

· Services, “the UNIX Way”

· Do one thing, do it well.

· Decouple tightly coupled services, make the architecture more modular.

· Loosely coupled services using programming language agnostic APIs for
communication

· Example: REST APIs

MONOLITHIC/LAYERED MICROSERVICES

Immutable
Infrastructure

What is Immutable
Infrastructure?

· Immutable Infrastructure is:

· Fully automated

· Can be deployed, destroyed, re-deployed without human intervention

· Within reason, someone running the command or clicking the button is fine

· Static

· Once deployed, do not alter infrastructure components

· If a change is needed, redeploy

· This is actually new!

· Cloud technologies, Linux containers, and the tooling around them have allowed this new
concept.

In Practice

· What you deploy is now a “build artifact”

· Example of a build artifact is a docker image

· Configuration Management is now part of the build

· Run your build/shell script, ansible, saltstack, puppet, chef, etc. at build time

· Example: in the Dockerfile

· Possible exception is configuration files mounted into the container at runtime

· Should be read-only, nothing should be mutable.

· Provides flexibility in deploying between environments.

· Need a configuration change?

· Build a new artifact

· Artifacts are then tested and “graduate” to production

· Red/Black, Blue/Green, etc Deployment models

Deployment Example

Deployment Example

Potential Issues Avoided

· Start a traditional deployment or
system upgrade

· Successful on part of the
infrastructure

· Suddenly, a wild failure appears!

· Use your imagination, anything that
could interrupt a deploy.

· How clean is the rollback procedure?

· How do you verify the components?

· Is your filesystem tree versioned?

· Can you guarantee the order of
upgrade trigger execution?

· Do you know how far the package
upgrade transaction made it before
the failure?

RPM Transaction Triggers

Immutable…
Operating Systems?

Project Atomic

tuned

SELinux

dockersystemd

kubernetesLinux Kernel

...

Fedora and CentOS New Tech

rpm-ostree

atomic

Fedora Atomic Host

Fedora Atomic Host OPTIMIZED FOR CONTAINERS

Minimized host
environment
tuned for
running Linux
containers.

Inherits everything from the
“Parent” Distro. This is Fedora
but with new delivery
mechanism coupled with a new
layer of abstraction on top of
the package management.

MINIMIZED
FOOTPRINT

SIMPLIFIED
MAINTENANCE

ORCHESTRATION
AT SCALE

Atomic
updating and
rollback means
it’s easy to
deploy, update,
and rollback
using ostrees..

Build composite
applications by
orchestrating
multiple
containers as
microservices
on a single host
instance.

Atomic Host

· Deployments and Upgrades are 'rpm-ostrees' and are not installed like traditional
rpms

· An 'ostree' is effectively an entire rootfs tree managed similar to git commits

· 'rpm-ostree' is a utility built on top of ostree to allow trees to be built from collections of
rpms

· Upgrades are atomic in nature

· All or nothing (it either applied or it didn't)

· Quick/easy rollback to previous tree

· Entire trees get tested as a cohesive unit

· There's no questions about what versions of X, Y, or Z when troubleshooting

Atomic Host

· The 'atomic' command is (currently) a wrapper around 'rpm-ostree' and 'docker'

· Performing an upgrade

atomic host upgrade
Updating from: fedora-atomic:fedora-atomic/f23/x86_64/docker-host

· Checking status

atomic host status
 TIMESTAMP (UTC) VERSION ID OSNAME REFSPEC

* 2016-02-02 05:34:15 23.58 ae53656858 fedora-atomic fedora-
atomic:fedora-atomic/f23/x86_64/docker-host
 2016-01-31 06:43:12 23.57 6adf2d354f fedora-atomic fedora-
atomic:fedora-atomic/f23/x86_64/docker-host

Orchestration

Kubernetes

· Distributed orchestration for
containers

· “Pod” - Set of containers that share
pid, network, IPC, and UTS
namespace.

· Are scheduled to nodes as an unit

· “Service” - Set of one or more Pods
and a policy to access them

· Replication Controller manages pods

· Node level proxy load balances and
proxies access to Services

· Pluggable overlay network provider

· Pluggable persistant storage provider

Developers!

OpenShift Origin

· Standard containers API

· Web-scale container orchestration &
management

· Container-optimized OS

· Large selection of supported
application runtimes & services

· Robust tools and UX for Development
& Operations

· Industry standard, web scale
distributed application platform

OpenShift Overview

Questions?

maxamillion@fedoraproject.org
@TheMaxamillion

CONTACT:

CC BY-SA 2.0

mailto:maxamillion@fedoraproject.org

References
· http://chadfowler.com/blog/2013/06/23/immutable-

deployments/

· http://blog.codeship.com/immutable-deployments/

· http://blog.codeship.com/immutable-infrastructure/

· http://martinfowler.com/articles/microservices.html

· http://microservicesbook.io/the-philosophy-of-
microservice-architecture/

· http://nirmata.com/2015/02/microservices-five-
architectural-constraints/

· http://2012.33degree.org/talk/show/67

· https://en.wikipedia.org/wiki/Operating-system-
level_virtualization

· https://coreos.com/blog/rocket/

· https://coreos.com/blog/appc-gains-new-support/

· https://www.docker.com/

· https://github.com/docker/distribution

· http://www.redhat.com/en/insights/containers

· http://rhelblog.redhat.com/2015/05/07/stop-gambling-
with-upgrades-murphys-law-always-wins/

· http://rhelblog.redhat.com/2015/05/05/rkt-appc-and-
docker-a-take-on-the-linux-container-upstream/

· http://rhelblog.redhat.com/2015/04/01/red-hat-
enterprise-linux-atomic-host-updates-made-easy/

· http://www.projectatomic.io/

· http://www.openshift.org//

· https://www.openshift.com

· http://www.redhat.com/en/about/blog/red-hat-and-
google-collaborate-kubernetes-manage-docker-
containers-scale

· http://rhelblog.redhat.com/2014/04/15/rhel-7-rc-and-
atomic-host/

· http://opencontainers.org/

· http://runc.io/

· http://queue.acm.org/detail.cfm?id=2884038

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

